Home
Class 10
MATHS
Solve : (a)/(ax-1)+(b)/(bx-1)=a+b, where...

Solve : `(a)/(ax-1)+(b)/(bx-1)=a+b`, where `a+b ne 0, ab ne 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{a}{ax-1} + \frac{b}{bx-1} = a + b \] where \( a + b \neq 0 \) and \( ab \neq 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \frac{a}{ax-1} + \frac{b}{bx-1} = a + b \] ### Step 2: Combine the fractions on the left side To combine the fractions, we need a common denominator, which is \((ax - 1)(bx - 1)\): \[ \frac{a(bx - 1) + b(ax - 1)}{(ax - 1)(bx - 1)} = a + b \] ### Step 3: Expand the numerator Now we expand the numerator: \[ a(bx - 1) + b(ax - 1) = abx - a + abx - b = 2abx - (a + b) \] So, we have: \[ \frac{2abx - (a + b)}{(ax - 1)(bx - 1)} = a + b \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ 2abx - (a + b) = (a + b)(ax - 1)(bx - 1) \] ### Step 5: Expand the right side Now we expand the right side: \[ (a + b)(ax - 1)(bx - 1) = (a + b)(abx^2 - (a + b)x + 1) \] ### Step 6: Set the equation to zero Now we rearrange the equation: \[ 2abx - (a + b) - (a + b)(abx^2 - (a + b)x + 1) = 0 \] ### Step 7: Collect like terms This will give us a quadratic equation in terms of \(x\): \[ -ab(a + b)x^2 + (2ab + (a + b)^2)x - (a + b) = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), we can find the values of \(x\). Here, \(A = -ab(a + b)\), \(B = 2ab + (a + b)^2\), and \(C = -(a + b)\). ### Step 9: Calculate the discriminant Calculate the discriminant \(D = B^2 - 4AC\): \[ D = (2ab + (a + b)^2)^2 - 4(-ab(a + b))(- (a + b)) \] ### Step 10: Find the roots Finally, we can find the roots using the quadratic formula. ### Final Answer The solutions for \(x\) will be: \[ x_1 = \frac{2}{a + b}, \quad x_2 = \frac{a + b}{ab} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise Exercise 5(A)|5 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise Exercise 5(B)|5 Videos
  • PROBABILITY

    ICSE|Exercise EXERCISE 25(C)|106 Videos
  • QUESTION PAPER 2019

    ICSE|Exercise SECTION B |20 Videos

Similar Questions

Explore conceptually related problems

Solve for x: a/(ax-1)+b/(bx-1)=a+b; x!= 1/a, 1/b

Solve: (x)/(a) - (a+b)/(x)= (b(a-b))/(ax) , when x ne 0 and a ne 0 .

Solve : (a+b)^(2)x^(2)-(a+b)x-6=0,a+b ne 0 .

log (log_(ab) a +(1)/(log_(b)ab) is (where ab ne 1)

Find the differential equation governing all the straight lines (x)/(a)+(y)/(b)=1, a ne 0, b ne 0 .

{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2)b)/(x)+(b^(2)a)/(y) = "a + b, where x, y"ne 0.):}

If a=b^2c , where a ne 0 and b ne 0 , then b/c =

If euation x^(3) + ax^(2) + bx + c = 0, where a, b, c in Q (a ne 1). If the real roots of the equation are x_(1), x_(2) and x_(1)x_(2), then prove that x_(1)x_(2) is rational.

Find the condition for are point (a,0), (h,k), (o,b) where ab ne0 tobe collinear.

Consider the equation x ^(3) -ax ^(2) +bx-c=0, where a,b,c are rational number, a ne 1. it is given that x _(1), x _(2) and x _(1)x_(2) are the real roots of the equation. Then x _(1) x _(2) ((a +1)/(b +c))=