Home
Class 10
MATHS
Using the Remainder Theorem, factorise e...

Using the Remainder Theorem, factorise each of the following completely:
(i) `3x^3+2x^(2)-19x+6`
(ii) `2x^(3)+x^2-13x+6`
(iii) `3x^(3)+2x^2-23x-30`
(iv) `4x^3+7x^2-36x-63`
(v) `x^3+x^2-4x-4`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the given polynomials using the Remainder Theorem, we will follow these steps for each part: ### (i) Factorise `3x^3 + 2x^2 - 19x + 6` 1. **Find a root using the Remainder Theorem**: We will test possible rational roots. Let's try \( x = 2 \): \[ 3(2)^3 + 2(2)^2 - 19(2) + 6 = 3(8) + 2(4) - 38 + 6 = 24 + 8 - 38 + 6 = 0 \] Thus, \( x = 2 \) is a root, so \( x - 2 \) is a factor. 2. **Perform synthetic division** of \( 3x^3 + 2x^2 - 19x + 6 \) by \( x - 2 \): \[ \begin{array}{r|rrrr} 2 & 3 & 2 & -19 & 6 \\ & & 6 & 16 & -6 \\ \hline & 3 & 8 & -3 & 0 \\ \end{array} \] The result is \( 3x^2 + 8x - 3 \). 3. **Factor the quadratic** \( 3x^2 + 8x - 3 \): We can factor this as: \[ 3x^2 + 9x - x - 3 = 3x(x + 3) - 1(x + 3) = (3x - 1)(x + 3) \] 4. **Final factorization**: \[ 3x^3 + 2x^2 - 19x + 6 = (x - 2)(3x - 1)(x + 3) \] ### (ii) Factorise `2x^3 + x^2 - 13x + 6` 1. **Find a root**: Testing \( x = 2 \): \[ 2(2)^3 + (2)^2 - 13(2) + 6 = 16 + 4 - 26 + 6 = 0 \] Thus, \( x - 2 \) is a factor. 2. **Synthetic division**: \[ \begin{array}{r|rrrr} 2 & 2 & 1 & -13 & 6 \\ & & 4 & 10 & -6 \\ \hline & 2 & 5 & -3 & 0 \\ \end{array} \] The result is \( 2x^2 + 5x - 3 \). 3. **Factor the quadratic**: \[ 2x^2 + 6x - x - 3 = 2x(x + 3) - 1(x + 3) = (2x - 1)(x + 3) \] 4. **Final factorization**: \[ 2x^3 + x^2 - 13x + 6 = (x - 2)(2x - 1)(x + 3) \] ### (iii) Factorise `3x^3 + 2x^2 - 23x - 30` 1. **Find a root**: Testing \( x = -2 \): \[ 3(-2)^3 + 2(-2)^2 - 23(-2) - 30 = -24 + 8 + 46 - 30 = 0 \] Thus, \( x + 2 \) is a factor. 2. **Synthetic division**: \[ \begin{array}{r|rrrr} -2 & 3 & 2 & -23 & -30 \\ & & -6 & 8 & 30 \\ \hline & 3 & -4 & -15 & 0 \\ \end{array} \] The result is \( 3x^2 - 4x - 15 \). 3. **Factor the quadratic**: \[ 3x^2 - 9x + 5x - 15 = 3x(x - 3) + 5(x - 3) = (3x + 5)(x - 3) \] 4. **Final factorization**: \[ 3x^3 + 2x^2 - 23x - 30 = (x + 2)(3x + 5)(x - 3) \] ### (iv) Factorise `4x^3 + 7x^2 - 36x - 63` 1. **Find a root**: Testing \( x = 3 \): \[ 4(3)^3 + 7(3)^2 - 36(3) - 63 = 108 + 63 - 108 - 63 = 0 \] Thus, \( x - 3 \) is a factor. 2. **Synthetic division**: \[ \begin{array}{r|rrrr} 3 & 4 & 7 & -36 & -63 \\ & & 12 & 57 & 63 \\ \hline & 4 & 19 & 21 & 0 \\ \end{array} \] The result is \( 4x^2 + 19x + 21 \). 3. **Factor the quadratic**: \[ 4x^2 + 12x + 7x + 21 = 4x(x + 3) + 7(x + 3) = (4x + 7)(x + 3) \] 4. **Final factorization**: \[ 4x^3 + 7x^2 - 36x - 63 = (x - 3)(4x + 7)(x + 3) \] ### (v) Factorise `x^3 + x^2 - 4x - 4` 1. **Find a root**: Testing \( x = 2 \): \[ (2)^3 + (2)^2 - 4(2) - 4 = 8 + 4 - 8 - 4 = 0 \] Thus, \( x - 2 \) is a factor. 2. **Synthetic division**: \[ \begin{array}{r|rrrr} 2 & 1 & 1 & -4 & -4 \\ & & 2 & 6 & 4 \\ \hline & 1 & 3 & 2 & 0 \\ \end{array} \] The result is \( x^2 + 3x + 2 \). 3. **Factor the quadratic**: \[ x^2 + 2x + x + 2 = (x + 2)(x + 1) \] 4. **Final factorization**: \[ x^3 + x^2 - 4x - 4 = (x - 2)(x + 2)(x + 1) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REMAINDER AND FACTOR THEOREMS

    ICSE|Exercise Exercise 8C|16 Videos
  • REMAINDER AND FACTOR THEOREMS

    ICSE|Exercise Exercise 8A|17 Videos
  • REFLECTION

    ICSE|Exercise QUESTION|1 Videos
  • REVISION PAPER -1

    ICSE|Exercise SECTION B|25 Videos

Similar Questions

Explore conceptually related problems

Use the Remainder Theorem to factorise the following expression 2x^(3)+x^(2)-13x+6 .

Using factor theorem, factorize each of the following polynomials : 2x^4-7x^3-13 x^2+63 x-45

Using factor theorem, factorize each of the following polynomials : 2x^4-7x^3-13 x^2+63 x-45

Using the Remainder theorem, factorise the expression 2x^(3)+x^(2)-2x-1 completely.

factorise (i) 2x^(3)-3x^(2)-17x+30 (ii) x^(3) -6x^(2)+11x-6 (iii) x^(3)+x^(2)-4x-4 (iv) 3x^(2)-x^(2)-3x+1

Use the Remainder Theorem to find which of the following is a factor of 2x^3 + 3x^2- 5x - 6. (i) x+1 (ii) 2x-1 (iii) x+2

Factorise: (i) x^3-2x^2-x+2 (ii) x^3-3x^2-9x-5 (iii) x^3+13 x^2+32 x+20 (iv) 2y^3+y^2-2y-1

Find the degree of each of the following polynomials : (i) 5x^(2)-2x+1 " " (ii) 1-5t+t^(4) " " (iii) 7 " " (iv) x^(4)-3x^(6)+2

Using the Remainder Theorem, factorise the expression 3x^3+ 10x^2+ x- 6. Hence, solve the equation 3x^3+ 10x^2+ x- 6=0.

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0