Home
Class 10
MATHS
If matrix A=[{:(,2,1,3),(,4,-3,2):}] and...

If matrix `A=[{:(,2,1,3),(,4,-3,2):}] and B=[{:(,3,-2),(,7,4):}]`, find transpose matrices `A^t and B^t`. If possible, find (i) `A+A^t` (ii) `B+B^t`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Find the transpose of matrix A Given: \[ A = \begin{pmatrix} 2 & 1 & 3 \\ 4 & -3 & 2 \end{pmatrix} \] To find the transpose \( A^t \), we convert the rows of \( A \) into columns: - The first row \( (2, 1, 3) \) becomes the first column of \( A^t \). - The second row \( (4, -3, 2) \) becomes the second column of \( A^t \). Thus, the transpose of matrix A is: \[ A^t = \begin{pmatrix} 2 & 4 \\ 1 & -3 \\ 3 & 2 \end{pmatrix} \] ### Step 2: Find the transpose of matrix B Given: \[ B = \begin{pmatrix} 3 & -2 \\ 7 & 4 \end{pmatrix} \] To find the transpose \( B^t \), we convert the rows of \( B \) into columns: - The first row \( (3, -2) \) becomes the first column of \( B^t \). - The second row \( (7, 4) \) becomes the second column of \( B^t \). Thus, the transpose of matrix B is: \[ B^t = \begin{pmatrix} 3 & 7 \\ -2 & 4 \end{pmatrix} \] ### Step 3: Find \( A + A^t \) To find \( A + A^t \), we need to check the dimensions of both matrices: - \( A \) is a \( 2 \times 3 \) matrix. - \( A^t \) is a \( 3 \times 2 \) matrix. Since the dimensions do not match (they cannot be added), we conclude: \[ A + A^t \text{ is not possible.} \] ### Step 4: Find \( B + B^t \) To find \( B + B^t \), we check the dimensions: - \( B \) is a \( 2 \times 2 \) matrix. - \( B^t \) is also a \( 2 \times 2 \) matrix. Since the dimensions match, we can add them: \[ B + B^t = \begin{pmatrix} 3 & -2 \\ 7 & 4 \end{pmatrix} + \begin{pmatrix} 3 & 7 \\ -2 & 4 \end{pmatrix} \] Now, we add the corresponding elements: - First element: \( 3 + 3 = 6 \) - Second element: \( -2 + 7 = 5 \) - Third element: \( 7 - 2 = 5 \) - Fourth element: \( 4 + 4 = 8 \) Thus, we get: \[ B + B^t = \begin{pmatrix} 6 & 5 \\ 5 & 8 \end{pmatrix} \] ### Final Results - \( A^t = \begin{pmatrix} 2 & 4 \\ 1 & -3 \\ 3 & 2 \end{pmatrix} \) - \( B^t = \begin{pmatrix} 3 & 7 \\ -2 & 4 \end{pmatrix} \) - \( A + A^t \) is not possible. - \( B + B^t = \begin{pmatrix} 6 & 5 \\ 5 & 8 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Given : M =[(5,-3),(-2, 4)] find its transpose matrix M'. If possible, find : (i) M+M ""^(t) (ii) M^(t)-M

if A=[{:(3,-2),(7,1):}]and B=[{:(2,3),(-1,4):}], then find (i) A+B (ii) A-2B

If B and C are two matrices such that B=[{:(,1,3),(,-2,0):}] and C=[{:(,17,7),(,-4,-8):}] , find the matrix M so that BM=C.

If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identify matric of the same order and A^(t) is the transpose of matrix A, find A^(t) B+BI .

If A=[(1, 2 ),(3, 4)] , find A+A^T .

Given A=[{:(,1,4),(,2,3):}] and B=[{:(,-4,-1),(,-3,-2):}] (i) find the matrix 2A+B. (ii) find a matrix C such that : C+B=[{:(,0,0),(,0,0):}]

Given A=[{:(,-3,6),(,0,-9):}] and A^t is it transpose matrix. Find : (i) 2A+3A^(t) (ii) 2A^(t)-3A

If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) where A^t is the transpose of matrix A.

ICSE-MATRICES-Exercise 9D
  1. If matrix A=[{:(,2,1,3),(,4,-3,2):}] and B=[{:(,3,-2),(,7,4):}], find ...

    Text Solution

    |

  2. Find x and y if [{:(,3,-2),(,-1,4):}] [{:(,2x),(,1):}] +2 [{:(,-4),(...

    Text Solution

    |

  3. Find x and y, if : [3x 8] [{:(,1,4),(,3,7):}] -3 [2 -7]=5[3,2y]

    Text Solution

    |

  4. If [x,y] [{:(,x),(,y):}]=[25] and [-x,y] [{:(,2x),(,y):}]=[-2,]2 find ...

    Text Solution

    |

  5. Given [{:(,2,1),(,-3,4):}]. X=[{:(,7),(,6):}]. Write : (i) the order...

    Text Solution

    |

  6. Evaluate : [{:(,cos 45^@, sin 30^@),(,sqrt2 cos 0^@, sin 0^@):}] [{:...

    Text Solution

    |

  7. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  8. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  9. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  10. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  11. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  12. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  13. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  14. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  15. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  16. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  17. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  18. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  19. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  20. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  21. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |