Home
Class 10
MATHS
If A=[{:(,4,-4),(,-3,3):}], B=[{:(,6,5),...

If `A=[{:(,4,-4),(,-3,3):}], B=[{:(,6,5),(,3,0):}] and C=[{:(,2,3),(,-1,-2):}]` show that AB=AC. Write the conclusion, if any, that you can draw from the result obtained above.

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( AB = AC \), we will perform the matrix multiplication of \( A \) with \( B \) and \( A \) with \( C \) separately and then compare the results. ### Given Matrices: - \( A = \begin{pmatrix} 4 & -4 \\ -3 & 3 \end{pmatrix} \) - \( B = \begin{pmatrix} 6 & 5 \\ 3 & 0 \end{pmatrix} \) - \( C = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \) ### Step 1: Calculate \( AB \) To find \( AB \), we use the formula for matrix multiplication: \[ AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \] Calculating each element of \( AB \): 1. **Element (1,1)**: \[ 4 \cdot 6 + (-4) \cdot 3 = 24 - 12 = 12 \] 2. **Element (1,2)**: \[ 4 \cdot 5 + (-4) \cdot 0 = 20 + 0 = 20 \] 3. **Element (2,1)**: \[ -3 \cdot 6 + 3 \cdot 3 = -18 + 9 = -9 \] 4. **Element (2,2)**: \[ -3 \cdot 5 + 3 \cdot 0 = -15 + 0 = -15 \] So, we have: \[ AB = \begin{pmatrix} 12 & 20 \\ -9 & -15 \end{pmatrix} \] ### Step 2: Calculate \( AC \) Now, we will calculate \( AC \): 1. **Element (1,1)**: \[ 4 \cdot 2 + (-4) \cdot (-1) = 8 + 4 = 12 \] 2. **Element (1,2)**: \[ 4 \cdot 3 + (-4) \cdot (-2) = 12 + 8 = 20 \] 3. **Element (2,1)**: \[ -3 \cdot 2 + 3 \cdot (-1) = -6 - 3 = -9 \] 4. **Element (2,2)**: \[ -3 \cdot 3 + 3 \cdot (-2) = -9 - 6 = -15 \] So, we have: \[ AC = \begin{pmatrix} 12 & 20 \\ -9 & -15 \end{pmatrix} \] ### Step 3: Compare \( AB \) and \( AC \) We found: \[ AB = \begin{pmatrix} 12 & 20 \\ -9 & -15 \end{pmatrix}, \quad AC = \begin{pmatrix} 12 & 20 \\ -9 & -15 \end{pmatrix} \] Since \( AB = AC \), we conclude that: \[ AB = AC \] ### Conclusion The result \( AB = AC \) indicates that the matrices \( B \) and \( C \) have a specific relationship such that when multiplied by the same matrix \( A \), they yield the same product. This can imply that \( B \) and \( C \) could be equivalent in terms of their effect when transformed by \( A \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(,-3,3),(,2,-2):}] and B=[{:(,4,6),(,4,6):}] , find the matrix AB. Write the conclusion, if any, that you can draw the result obtained.

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}] , then show that A (BC)=(AB)c.

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

If A=[{:(,-2,3),(,4,1):}] and B=[{:(,1,2),(,3,5):}] , find (i) AB (ii) BA (iii) Is AB=BA? (iv) Write the conclusion that you draw from the result obtained above in (iii).

If A=[{:(2, 1,),(4,2,)],B =[{:(2,3,4),(1,4,0):}] and C=[{:(-1,2,1),(1,0,2):}] then veri fy that A(B+C)=(AB+AC) .

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(,2,-1),(,3,4):}]=B=[{:(,5,2),(,7,4):}],C=[{:(,2,5),(,3,8):}] and AB-CD=0 find D.

if A[{:(1,3,-1),(2,2,-1),(3,0,-1):}]and B=[{:(-2,3,-1),(-1,2,-1),(-6,9,-4):}], then show that AB=BA.

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,4,-4),(,-3,3):}], B=[{:(,6,5),(,3,0):}] and C=[{:(,2,3),(,-1...

    Text Solution

    |

  2. Find x and y if [{:(,3,-2),(,-1,4):}] [{:(,2x),(,1):}] +2 [{:(,-4),(...

    Text Solution

    |

  3. Find x and y, if : [3x 8] [{:(,1,4),(,3,7):}] -3 [2 -7]=5[3,2y]

    Text Solution

    |

  4. If [x,y] [{:(,x),(,y):}]=[25] and [-x,y] [{:(,2x),(,y):}]=[-2,]2 find ...

    Text Solution

    |

  5. Given [{:(,2,1),(,-3,4):}]. X=[{:(,7),(,6):}]. Write : (i) the order...

    Text Solution

    |

  6. Evaluate : [{:(,cos 45^@, sin 30^@),(,sqrt2 cos 0^@, sin 0^@):}] [{:...

    Text Solution

    |

  7. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  8. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  9. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  10. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  11. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  12. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  13. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  14. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  15. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  16. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  17. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  18. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  19. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  20. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  21. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |