Home
Class 10
MATHS
If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A...

If `A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I`, where I is a unit matrix of order 2.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( A^2 - 3A + 3I \), where \( A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \) and \( I \) is the identity matrix of order 2, we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + (-1) \cdot (-1) = 4 + 1 = 5 \) - First row, second column: \( 2 \cdot (-1) + (-1) \cdot 3 = -2 - 3 = -5 \) - Second row, first column: \( (-1) \cdot 2 + 3 \cdot (-1) = -2 - 3 = -5 \) - Second row, second column: \( (-1) \cdot (-1) + 3 \cdot 3 = 1 + 9 = 10 \) Thus, \[ A^2 = \begin{pmatrix} 5 & -5 \\ -5 & 10 \end{pmatrix} \] ### Step 2: Calculate \( 3A \) Next, we calculate \( 3A \): \[ 3A = 3 \cdot \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ -3 & 9 \end{pmatrix} \] ### Step 3: Calculate \( 3I \) The identity matrix \( I \) of order 2 is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Now, calculate \( 3I \): \[ 3I = 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] ### Step 4: Substitute into the expression \( A^2 - 3A + 3I \) Now we substitute \( A^2 \), \( 3A \), and \( 3I \) into the expression: \[ A^2 - 3A + 3I = \begin{pmatrix} 5 & -5 \\ -5 & 10 \end{pmatrix} - \begin{pmatrix} 6 & -3 \\ -3 & 9 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] Calculating each element: - First row, first column: \( 5 - 6 + 3 = 2 \) - First row, second column: \( -5 - (-3) + 0 = -5 + 3 = -2 \) - Second row, first column: \( -5 - (-3) + 0 = -5 + 3 = -2 \) - Second row, second column: \( 10 - 9 + 3 = 1 + 3 = 4 \) Thus, we have: \[ A^2 - 3A + 3I = \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix} \] ### Final Answer The final result is: \[ \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ICSE|Exercise Exercise 9A|15 Videos
  • MATRICES

    ICSE|Exercise Exercise 9B|11 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION-B|17 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos

Similar Questions

Explore conceptually related problems

If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I , where I is a 2 xx 2 unit matrix.

Given A=[(x, 3),(y, 3)] If A^(2)=3I , where I is the identity matrix of order 2, find x and y.

If A=[{:(,0,2),(,5,-2):}], B=[{:(,1,-1),(,3,2):}] and is a unit matrix of order 2 xx 2 find : (i) AB (ii) BA (iii) AI (Iv) A^2 (v) B^2A

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=[{:(,4,2),(,1,1):}] , find (A-2I) (A-3I) .

Given [(4,2),(-1,1)] M = 6 I, where M is a matrix and I is the unit matrix or order 2xx2 . (i) State the order of matrix M.

Given [(4,2),(-1,1)] M = 6 I, where M is a matrix and I is the unit matrix or order 2xx2 . (ii) Find the matrix M.

If M=[{:(,1,2),(,2,1):}] and I is a unit matrix of the same order as that of M, show that M^2=2M+3I

Let A and B are two non - singular matrices of order 3 such that A+B=2I and A^(-1)+B^(-1)=3I , then AB is equal to (where, I is the identity matrix of order 3)

A square matrix A of order 3 satisfies A^(2)=I-2A , where I is an identify matrix of order 3. If A^(n)=29A-12I , then the value of n is equal to

ICSE-MATRICES-Exercise 9D
  1. If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I, where I is a unit ma...

    Text Solution

    |

  2. Find x and y if [{:(,3,-2),(,-1,4):}] [{:(,2x),(,1):}] +2 [{:(,-4),(...

    Text Solution

    |

  3. Find x and y, if : [3x 8] [{:(,1,4),(,3,7):}] -3 [2 -7]=5[3,2y]

    Text Solution

    |

  4. If [x,y] [{:(,x),(,y):}]=[25] and [-x,y] [{:(,2x),(,y):}]=[-2,]2 find ...

    Text Solution

    |

  5. Given [{:(,2,1),(,-3,4):}]. X=[{:(,7),(,6):}]. Write : (i) the order...

    Text Solution

    |

  6. Evaluate : [{:(,cos 45^@, sin 30^@),(,sqrt2 cos 0^@, sin 0^@):}] [{:...

    Text Solution

    |

  7. If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B, find ma...

    Text Solution

    |

  8. If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(...

    Text Solution

    |

  9. If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) ...

    Text Solution

    |

  10. Find x and y, if : [{:(,x,3x),(,y,4y):}] [{:(,2),(,1):}]=[{:(,5),(,12)...

    Text Solution

    |

  11. If matrix X=[{:(,-3,4),(,2,-3):}] [{:(,2),(,-2):}] and 2X-3Y=[{:(,10),...

    Text Solution

    |

  12. Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(...

    Text Solution

    |

  13. Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and...

    Text Solution

    |

  14. If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identif...

    Text Solution

    |

  15. Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(...

    Text Solution

    |

  16. Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(...

    Text Solution

    |

  17. Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}]. Find A^2+AB+B^2

    Text Solution

    |

  18. If A=[{:(,3,a),(,-4,8):}], B=[{:(,c,4),(,-3,0):}] , C=[{:(,-1,4),(,3,b...

    Text Solution

    |

  19. Given A=[{:(,p,0),(,0,2):}], B=[{:(,0,-q),(,1,0):}], C=[{:(,2,-2),(,2,...

    Text Solution

    |

  20. Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] ...

    Text Solution

    |

  21. Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] ...

    Text Solution

    |