Home
Class 10
MATHS
If A=[(1,-1),(2,-1)],B = [(x,1),(4,-1)]...

If `A=[(1,-1),(2,-1)],B = [(x,1),(4,-1)] and A^2+B^2=(A+B)^2` find the value of x.
State, whether `A^2 + B^2 and (A + B)^2` are always equal or not.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the equation \( A^2 + B^2 = (A + B)^2 \) holds true, where: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} x & 1 \\ 4 & -1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we perform matrix multiplication of \( A \) with itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \cdot 1 + (-1) \cdot 2 = 1 - 2 = -1 \) - First row, second column: \( 1 \cdot (-1) + (-1) \cdot (-1) = -1 + 1 = 0 \) - Second row, first column: \( 2 \cdot 1 + (-1) \cdot 2 = 2 - 2 = 0 \) - Second row, second column: \( 2 \cdot (-1) + (-1) \cdot (-1) = -2 + 1 = -1 \) Thus, \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] ### Step 2: Calculate \( B^2 \) Next, we calculate \( B^2 \): \[ B^2 = B \cdot B = \begin{pmatrix} x & 1 \\ 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} x & 1 \\ 4 & -1 \end{pmatrix} \] Calculating each element: - First row, first column: \( x \cdot x + 1 \cdot 4 = x^2 + 4 \) - First row, second column: \( x \cdot 1 + 1 \cdot (-1) = x - 1 \) - Second row, first column: \( 4 \cdot x + (-1) \cdot 4 = 4x - 4 \) - Second row, second column: \( 4 \cdot 1 + (-1) \cdot (-1) = 4 + 1 = 5 \) Thus, \[ B^2 = \begin{pmatrix} x^2 + 4 & x - 1 \\ 4x - 4 & 5 \end{pmatrix} \] ### Step 3: Calculate \( A + B \) Now we calculate \( A + B \): \[ A + B = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} + \begin{pmatrix} x & 1 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 1 + x & -1 + 1 \\ 2 + 4 & -1 - 1 \end{pmatrix} = \begin{pmatrix} x + 1 & 0 \\ 6 & -2 \end{pmatrix} \] ### Step 4: Calculate \( (A + B)^2 \) Next, we calculate \( (A + B)^2 \): \[ (A + B)^2 = (A + B) \cdot (A + B) = \begin{pmatrix} x + 1 & 0 \\ 6 & -2 \end{pmatrix} \cdot \begin{pmatrix} x + 1 & 0 \\ 6 & -2 \end{pmatrix} \] Calculating each element: - First row, first column: \( (x + 1)(x + 1) + 0 \cdot 6 = (x + 1)^2 \) - First row, second column: \( (x + 1) \cdot 0 + 0 \cdot (-2) = 0 \) - Second row, first column: \( 6(x + 1) + (-2) \cdot 6 = 6x + 6 - 12 = 6x - 6 \) - Second row, second column: \( 6 \cdot 0 + (-2)(-2) = 4 \) Thus, \[ (A + B)^2 = \begin{pmatrix} (x + 1)^2 & 0 \\ 6x - 6 & 4 \end{pmatrix} \] ### Step 5: Set up the equation \( A^2 + B^2 = (A + B)^2 \) Now we set \( A^2 + B^2 \) equal to \( (A + B)^2 \): \[ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} x^2 + 4 & x - 1 \\ 4x - 4 & 5 \end{pmatrix} = \begin{pmatrix} (x + 1)^2 & 0 \\ 6x - 6 & 4 \end{pmatrix} \] Calculating \( A^2 + B^2 \): \[ A^2 + B^2 = \begin{pmatrix} -1 + (x^2 + 4) & 0 + (x - 1) \\ 0 + (4x - 4) & -1 + 5 \end{pmatrix} = \begin{pmatrix} x^2 + 3 & x - 1 \\ 4x - 4 & 4 \end{pmatrix} \] ### Step 6: Equate the matrices Now we equate the corresponding elements: 1. From the first row, first column: \[ x^2 + 3 = (x + 1)^2 \] Expanding the right side: \[ x^2 + 3 = x^2 + 2x + 1 \implies 3 = 2x + 1 \implies 2 = 2x \implies x = 1 \] 2. From the first row, second column: \[ x - 1 = 0 \implies x = 1 \] 3. From the second row, first column: \[ 4x - 4 = 6x - 6 \] Rearranging gives: \[ 2 = 2x \implies x = 1 \] 4. From the second row, second column: \[ 4 = 4 \quad \text{(always true)} \] ### Conclusion The value of \( x \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • MIXED PRACTICE

    ICSE|Exercise SET B|52 Videos
  • MEASURES OF CENTRAL TENDENCY (MEAN, MEDIAN, QUARTILES AND MODE)

    ICSE|Exercise EXERCISE 24 (E)|23 Videos
  • PROBABILITY

    ICSE|Exercise EXERCISE 25(C)|106 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2)) then find the values of a and b.

If A=[[1,-1],[ 2,-1]] and B=[[a,1],[b,-1]] and (A+B)^2=A^2+B^2, then find the value of a and b .

If A =[(2,-1),(-1,2)] and B=[(1,4),(-1,1)] then find (A+B)^2

If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}] , find the value of x, given that A^2=B

If A=[1-1 2-1] , B=[a1b-1] and (A+B)^2=A^2+B^2 , then values of a and b are a=4 , b=1 (b) a=1 , b=4 (c) a=0 , b=4 (d) a=2 , b=4

If A=[(0,-x),(x,0)] , B=[(0 ,1 ),(1 ,0)] and x^2=-1 , then show that (A+B)^2=A^2+B^2 .

If y=(a x-b)/((x-1)(x-4)) has a turning point P(2,-1), find the value of a and b .

Of A(-2,-1), B(a ,0), C(4, b) and D(1,2) are the vertices of a parallelogram, find the values of a and b .

ICSE-MIXED PRACTICE -SET B
  1. If A=[(1,-1),(2,-1)],B = [(x,1),(4,-1)] and A^2+B^2=(A+B)^2 find the ...

    Text Solution

    |

  2. A dealer sells goods/services, worth Rs 30,000 to some other dealer in...

    Text Solution

    |

  3. The monthly instalment of a recurring deposit account is Rs 2,400. If ...

    Text Solution

    |

  4. The maturity value of a recurring deposit account is Rs 42,400. If the...

    Text Solution

    |

  5. A man invests equal amounts of money in two companies A and B. Company...

    Text Solution

    |

  6. A sum of Rs54,000 is invested partly in shares paying 6% dividend at 4...

    Text Solution

    |

  7. Solve and graph the solution set of : 2x - 9 lt 7 and 3x + 9 le 25, ...

    Text Solution

    |

  8. Solve : 3x - 2 gt 19 " or " 3 - 2x ge 7 , x in R

    Text Solution

    |

  9. Use formula to solve the quadratic equation : x^2 + x - (a + 1) (a + 2...

    Text Solution

    |

  10. By selling an article for Rs96, a man gains as much percent as its cos...

    Text Solution

    |

  11. A trader bought a number of articles for Rs900, five were damaged and ...

    Text Solution

    |

  12. 1077 boxes of oranges were loaded in three trucks. While unloading the...

    Text Solution

    |

  13. If a neb and a : b is the duplicate ratio of (a + c) and (b + c). sho...

    Text Solution

    |

  14. If 16((a-x)/(a+x))^3=((a+x)/(a-x)) , show that : a = 3x .

    Text Solution

    |

  15. Solve for x , using the properties of proportionality (1+x+x^2)/(1-x+x...

    Text Solution

    |

  16. Show that 2x + 7 is a factor of 2x^3 + 7x^2 - 4x - 14 Hence, solve the...

    Text Solution

    |

  17. What number should be subtracted from 2x^3 - 5x^2 + 5x + 8 so that th...

    Text Solution

    |

  18. The expression 4x^(3)-bx^(2)+x-c leaves remainders 0 and 30 when divid...

    Text Solution

    |

  19. If for two matrices M and N, N =[(3,2),(2,-1)] and product MxxN = [-1...

    Text Solution

    |

  20. If the sum of first 20 terms of an A.P. is same as the sum of its firs...

    Text Solution

    |

  21. If a, b, c are in A.P., show that: (b + c), (c + a) and (a + b) are al...

    Text Solution

    |