Home
Class 10
MATHS
Simplify : sinA[(sinA,-cosA),(cosA, sinA...

Simplify : `sinA[(sinA,-cosA),(cosA, sinA)]+cosA[(cosA,sinA),(-sinA, cosA)]`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sin A \begin{pmatrix} \sin A & -\cos A \\ \cos A & \sin A \end{pmatrix} + \cos A \begin{pmatrix} \cos A & \sin A \\ -\sin A & \cos A \end{pmatrix} \), we will follow these steps: ### Step 1: Distribute \( \sin A \) and \( \cos A \) into their respective matrices. \[ \sin A \begin{pmatrix} \sin A & -\cos A \\ \cos A & \sin A \end{pmatrix} = \begin{pmatrix} \sin^2 A & -\sin A \cos A \\ \sin A \cos A & \sin^2 A \end{pmatrix} \] \[ \cos A \begin{pmatrix} \cos A & \sin A \\ -\sin A & \cos A \end{pmatrix} = \begin{pmatrix} \cos^2 A & \cos A \sin A \\ -\cos A \sin A & \cos^2 A \end{pmatrix} \] ### Step 2: Add the two resulting matrices together. Now, we add the two matrices: \[ \begin{pmatrix} \sin^2 A & -\sin A \cos A \\ \sin A \cos A & \sin^2 A \end{pmatrix} + \begin{pmatrix} \cos^2 A & \cos A \sin A \\ -\cos A \sin A & \cos^2 A \end{pmatrix} \] This results in: \[ \begin{pmatrix} \sin^2 A + \cos^2 A & -\sin A \cos A + \cos A \sin A \\ \sin A \cos A - \cos A \sin A & \sin^2 A + \cos^2 A \end{pmatrix} \] ### Step 3: Simplify the entries of the resulting matrix. The entries simplify as follows: 1. The first entry: \( \sin^2 A + \cos^2 A = 1 \) (using the Pythagorean identity). 2. The second entry: \( -\sin A \cos A + \cos A \sin A = 0 \). 3. The third entry: \( \sin A \cos A - \cos A \sin A = 0 \). 4. The fourth entry: \( \sin^2 A + \cos^2 A = 1 \) (again using the Pythagorean identity). Thus, the resulting matrix is: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Answer: The simplified expression is: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2019

    ICSE|Exercise SECTION B |20 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise Competency Based Questions|10 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise QUESTIONS |33 Videos

Similar Questions

Explore conceptually related problems

cosA/(1−sinA) =

Solve sinA.cos(A-B)-cosA.sin(A-B)

(sinA+cosA)^2+(sinA-cosA)^2=

Prove the following identities: (sinA+cosA)/(sinA-cosA)+(sinA-cosA)/(sinA+cosA)=2/(sin^2A-cos^2A)=2/(2sin^2A-1)=2/(1-2cos^2A)

Prove that: (1+cosA+sinA)/(1+cosA-sinA)=(1+sinA)/(cosA)

Prove that (1+sinA-cosA)^2+(1-sinA+cosA)^2=4(1-sinA.cosA)

If (2sinA)/(1+sinA+cosA)=k then (1+sinA-cosA)/(1+sinA)=

Prove the following identities: (cosA)/(1-sinA)+(sinA)/(1-cosA)+1 = (sinAcosA)/((1-sinA)(1-cosA) ((1+cotA+tanA)(sinA-cosA)/(sec^3A-cos e c^3A)=sin^2Acos^2A

Prove that : (sinA-cosA)(cotA +tanA)=secA-"cosec"A

Prove: (1+cosA)/(sinA)=(sinA)/(1-cosA)

ICSE-QUESTION PAPER 2019-SECTION B
  1. Simplify : sinA[(sinA,-cosA),(cosA, sinA)]+cosA[(cosA,sinA),(-sinA, co...

    Text Solution

    |

  2. There are 25 disc numbered 1 to 25. They are put in a closed box and s...

    Text Solution

    |

  3. Rekha opened a recurring deposite account for 20 months. The rate of i...

    Text Solution

    |

  4. Use a graph sheet for this question. Take 1 cm = 1 unit along both x a...

    Text Solution

    |

  5. In the given figure, angle PQR = anglePST = 90^(@), PQ = 5 cm and PS =...

    Text Solution

    |

  6. The first and last term of a geometrical Pregression (G.P.) are 3 and ...

    Text Solution

    |

  7. A hemispherical and a conical hole are scooped out of a solid wooden ...

    Text Solution

    |

  8. In the given figure AC is a tangent to the circle with centre O. If a...

    Text Solution

    |

  9. The model of a building is constructed with the scale factor 1:30. (...

    Text Solution

    |

  10. The model of a building is constructed with the scale factor 1 : 30. ...

    Text Solution

    |

  11. Given [(4,2),(-1,1)]M = 6 I, where M is a matrix and I is the unit mat...

    Text Solution

    |

  12. The sum of the first three terms of an Arithmeic Progression (A.P.) is...

    Text Solution

    |

  13. The vertices of a DeltaABC are A(3, 8), B(-1, 2) and C(6, 6). Find : ...

    Text Solution

    |

  14. Using ruler and a compass only, construct a semi-circle with diameter ...

    Text Solution

    |

  15. The data on the number of patients attending a hospital in a month are...

    Text Solution

    |

  16. Using properties of proportion solve for x, given (sqrt(5x)+sqrt(2x-...

    Text Solution

    |

  17. Sachin invests Rs. 8,500 in 10%, Rs. 100 shares at Rs. 170. He sells ...

    Text Solution

    |

  18. A man observes the angle of elevation of the top of the tower to be 45...

    Text Solution

    |

  19. Using the Remainder Theorem find the remainders obtained when x^(3...

    Text Solution

    |

  20. The product of two consecutive natural numbers which are multliples of...

    Text Solution

    |

  21. In the given figure, ABCDE is a pentagone inscribed in a circle such ...

    Text Solution

    |