Solve for matrics A and B , where
` 2A + B = [{:( 3,-4),(2,7) :}] and A - 2B =[{:( 4,3),(1,1):}]`
Solve for matrics A and B , where
` 2A + B = [{:( 3,-4),(2,7) :}] and A - 2B =[{:( 4,3),(1,1):}]`
` 2A + B = [{:( 3,-4),(2,7) :}] and A - 2B =[{:( 4,3),(1,1):}]`
Text Solution
AI Generated Solution
The correct Answer is:
To solve for matrices A and B given the equations:
1. \( 2A + B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix} \) (Equation 1)
2. \( A - 2B = \begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix} \) (Equation 2)
We will follow these steps:
### Step 1: Multiply Equation 1 by 2
Multiply the entire Equation 1 by 2 to eliminate B later.
\[
2(2A + B) = 2 \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix}
\]
This simplifies to:
\[
4A + 2B = \begin{pmatrix} 6 & -8 \\ 4 & 14 \end{pmatrix} \quad \text{(Equation 3)}
\]
**Hint:** When multiplying a matrix by a scalar, multiply each element of the matrix by that scalar.
### Step 2: Add Equation 2 and Equation 3
Now, we will add Equation 2 and Equation 3:
\[
(4A + 2B) + (A - 2B) = \begin{pmatrix} 6 & -8 \\ 4 & 14 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix}
\]
This simplifies to:
\[
5A = \begin{pmatrix} 6 + 4 & -8 + 3 \\ 4 + 1 & 14 + 1 \end{pmatrix}
\]
Calculating the right side gives:
\[
5A = \begin{pmatrix} 10 & -5 \\ 5 & 15 \end{pmatrix}
\]
**Hint:** When adding two matrices, add the corresponding elements together.
### Step 3: Solve for A
Now, divide both sides by 5 to find A:
\[
A = \frac{1}{5} \begin{pmatrix} 10 & -5 \\ 5 & 15 \end{pmatrix}
\]
Calculating this gives:
\[
A = \begin{pmatrix} \frac{10}{5} & \frac{-5}{5} \\ \frac{5}{5} & \frac{15}{5} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}
\]
**Hint:** To divide a matrix by a scalar, divide each element of the matrix by that scalar.
### Step 4: Substitute A into Equation 1 to find B
Now substitute A back into Equation 1 to find B:
\[
2A + B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix}
\]
Substituting A:
\[
2 \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} + B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix}
\]
Calculating \(2A\):
\[
\begin{pmatrix} 4 & -2 \\ 2 & 6 \end{pmatrix} + B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix}
\]
### Step 5: Solve for B
Now, isolate B:
\[
B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix} - \begin{pmatrix} 4 & -2 \\ 2 & 6 \end{pmatrix}
\]
Calculating this gives:
\[
B = \begin{pmatrix} 3 - 4 & -4 - (-2) \\ 2 - 2 & 7 - 6 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}
\]
### Final Result
Thus, the matrices A and B are:
\[
A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}
\]
---
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Write the additive inverse of matrices A,B, and C where A=[6,-5], B=[{:(,-2,0),(,4,-1):}] and C=[{:(,-7),(,4):}]
Determine the matrices A and B where A + 2B = [(1, 2, 0), (6, -3, 3), (-5, 3, 1)] and 2A - B = [(2, -1, 5), (2, -1, 6), (0, 1, 2)]
If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]
A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] Value of |adj (adj adj( adj A)))| is
A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] The value of adj (adj A) is,
if A=[{:(3,-2),(7,1):}]and B=[{:(2,3),(-1,4):}], then find (i) A+B (ii) A-2B
For the matrices A and B, verify that (AB)′=B′A′, where (i) A=[{:(-1),(4),(3):}], B=[-1" " 2" " 1]
Solve for a,b and c, if, (i) [{:(,-4,a+5),(,3,2):}]=[{:(,b+4,2),(,3,c-1):}] (ii) [{:(,a,a-b),(,b+c,0):}]=[{:(,3,-1),(,2,0):}]
if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.
if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .