Home
Class 10
MATHS
Solve for matrics A and B , where 2A...

Solve for matrics A and B , where
` 2A + B = [{:( 3,-4),(2,7) :}] and A - 2B =[{:( 4,3),(1,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve for matrices A and B given the equations: 1. \( 2A + B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix} \) (Equation 1) 2. \( A - 2B = \begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix} \) (Equation 2) We will follow these steps: ### Step 1: Multiply Equation 1 by 2 Multiply the entire Equation 1 by 2 to eliminate B later. \[ 2(2A + B) = 2 \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix} \] This simplifies to: \[ 4A + 2B = \begin{pmatrix} 6 & -8 \\ 4 & 14 \end{pmatrix} \quad \text{(Equation 3)} \] **Hint:** When multiplying a matrix by a scalar, multiply each element of the matrix by that scalar. ### Step 2: Add Equation 2 and Equation 3 Now, we will add Equation 2 and Equation 3: \[ (4A + 2B) + (A - 2B) = \begin{pmatrix} 6 & -8 \\ 4 & 14 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix} \] This simplifies to: \[ 5A = \begin{pmatrix} 6 + 4 & -8 + 3 \\ 4 + 1 & 14 + 1 \end{pmatrix} \] Calculating the right side gives: \[ 5A = \begin{pmatrix} 10 & -5 \\ 5 & 15 \end{pmatrix} \] **Hint:** When adding two matrices, add the corresponding elements together. ### Step 3: Solve for A Now, divide both sides by 5 to find A: \[ A = \frac{1}{5} \begin{pmatrix} 10 & -5 \\ 5 & 15 \end{pmatrix} \] Calculating this gives: \[ A = \begin{pmatrix} \frac{10}{5} & \frac{-5}{5} \\ \frac{5}{5} & \frac{15}{5} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \] **Hint:** To divide a matrix by a scalar, divide each element of the matrix by that scalar. ### Step 4: Substitute A into Equation 1 to find B Now substitute A back into Equation 1 to find B: \[ 2A + B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix} \] Substituting A: \[ 2 \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} + B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix} \] Calculating \(2A\): \[ \begin{pmatrix} 4 & -2 \\ 2 & 6 \end{pmatrix} + B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix} \] ### Step 5: Solve for B Now, isolate B: \[ B = \begin{pmatrix} 3 & -4 \\ 2 & 7 \end{pmatrix} - \begin{pmatrix} 4 & -2 \\ 2 & 6 \end{pmatrix} \] Calculating this gives: \[ B = \begin{pmatrix} 3 - 4 & -4 - (-2) \\ 2 - 2 & 7 - 6 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix} \] ### Final Result Thus, the matrices A and B are: \[ A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Write the additive inverse of matrices A,B, and C where A=[6,-5], B=[{:(,-2,0),(,4,-1):}] and C=[{:(,-7),(,4):}]

Determine the matrices A and B where A + 2B = [(1, 2, 0), (6, -3, 3), (-5, 3, 1)] and 2A - B = [(2, -1, 5), (2, -1, 6), (0, 1, 2)]

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]

A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] Value of |adj (adj adj( adj A)))| is

A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] The value of adj (adj A) is,

if A=[{:(3,-2),(7,1):}]and B=[{:(2,3),(-1,4):}], then find (i) A+B (ii) A-2B

For the matrices A and B, verify that (AB)′=B′A′, where (i) A=[{:(-1),(4),(3):}], B=[-1" " 2" " 1]

Solve for a,b and c, if, (i) [{:(,-4,a+5),(,3,2):}]=[{:(,b+4,2),(,3,c-1):}] (ii) [{:(,a,a-b),(,b+c,0):}]=[{:(,3,-1),(,2,0):}]

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .