Home
Class 11
MATHS
If P(AuuB)=0.65andP(AcapB)=0.15, find P(...

If `P(AuuB)=0.65andP(AcapB)=0.15`, find `P(overline(A))+P(overline(B))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P(\overline{A}) + P(\overline{B}) \) given that \( P(A \cup B) = 0.65 \) and \( P(A \cap B) = 0.15 \). ### Step-by-Step Solution: 1. **Understand the Complement Rule**: The probability of the complement of an event \( A \) is given by: \[ P(\overline{A}) = 1 - P(A) \] Similarly, \[ P(\overline{B}) = 1 - P(B) \] 2. **Use the Formula for Union**: We know from probability theory that: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] We can rearrange this to find \( P(A) + P(B) \): \[ P(A) + P(B) = P(A \cup B) + P(A \cap B) \] 3. **Substitute the Given Values**: Substitute the known values into the equation: \[ P(A) + P(B) = 0.65 + 0.15 = 0.80 \] 4. **Calculate \( P(\overline{A}) + P(\overline{B}) \)**: Now, we can find \( P(\overline{A}) + P(\overline{B}) \): \[ P(\overline{A}) + P(\overline{B}) = (1 - P(A)) + (1 - P(B)) \] This simplifies to: \[ P(\overline{A}) + P(\overline{B}) = 2 - (P(A) + P(B)) \] Substitute \( P(A) + P(B) = 0.80 \): \[ P(\overline{A}) + P(\overline{B}) = 2 - 0.80 = 1.20 \] ### Final Answer: Thus, the value of \( P(\overline{A}) + P(\overline{B}) \) is \( 1.20 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: if A and B are two events, such that 0 lt P(A),P(B) lt 1, then P((A)/(overline(B)))+P((overline(A))/(overline(B)))=(3)/(2) Statement-2: If A and B are two events, such that 0 lt P(A), P(B) lt 1, then P(A//B)=(P(AcapB))/(P(B)) and P(overline(B))=P(A capoverline(B))+P(overline(A) cap overline(B))

If P(A)=(1)/(4), P(B)=(1)/(13) and P(AcapB)=(1)/(52) , then the value of P(overline(A)capoverline(B)) , is A. (3)/(13) B. (5)/(13) C. (7)/(13) D. (9)/(13)

If P(A cup B)=3//4 " and " P(overline(A))=2//3, " then " P(overline(A) cap B) is equal to

If A and B are two events such that P(AcapB)=(1)/(4), P(A)=P(B)=q and P(overline(A)capoverline(B))=(1)/(5) then q is equal to A. (17)/(40) B. (19)/(40) C. (21)/(40) D. (23)/(40)

Let A and B be two events such that Poverline((AcupB))=(1)/(6),P(AcapB)=(1)/(4) and Poverline(A)=(1)/(4) ,where overline(A) stands for complement of event A. then , events A and B are

Let A and B be two events such that Poverline((AcupB))=(1)/(6),P(AcapB)=(1)/(4) and Poverline(A)=(1)/(4) ,where overline(A) stands for complement of event A. then , events A and B are

Let A and B be two events such that P(A cup B)=P(A cap B) . Then, Statement-1: P(A cap overline(B))=P(overline(A) cap B)=0 Statement-2: P(A)+P(B)=1

If P(A cap B)=(1)/(2), P(overline(A) cap overline(B))=(1)/(2) and 2P(A)=P(B)=p, then the value of p is equal to

Statement-1 If A and B be the event in a sample space, such that P(A)=0.3 and P(B)=0.2, then P(Acapoverline(B)) cannot be found. Statement-2 P(Acapoverline(B))=P(A)+P(overline(B))-P(Acapoverline(B))

If P(AcupB) = 0.8 and P(AcapB) = 0.3 , then P(barA)+P(barB) is equal to