Home
Class 11
MATHS
construct truth table for (~p)^^ (~q)...

construct truth table for `(~p)^^ (~q)`

Text Solution

AI Generated Solution

The correct Answer is:
To construct the truth table for the expression `(~p) ∧ (~q)`, we will follow these steps: ### Step 1: Identify the Variables We have two variables, \( p \) and \( q \). ### Step 2: Determine the Number of Rows Since there are 2 variables, the number of possible combinations of truth values is \( 2^n \) where \( n \) is the number of variables. Here, \( n = 2 \), so \( 2^2 = 4 \). Thus, we will have 4 rows in our truth table. ### Step 3: Create the Table Structure We will create a table with the following columns: 1. \( p \) 2. \( q \) 3. \( \sim p \) (negation of \( p \)) 4. \( \sim q \) (negation of \( q \)) 5. \( \sim p \land \sim q \) (conjunction of negation of \( p \) and negation of \( q \)) ### Step 4: Fill in the Values for \( p \) and \( q \) We will assign the truth values for \( p \) and \( q \) as follows: - Row 1: \( p = \text{True}, q = \text{True} \) - Row 2: \( p = \text{True}, q = \text{False} \) - Row 3: \( p = \text{False}, q = \text{True} \) - Row 4: \( p = \text{False}, q = \text{False} \) ### Step 5: Calculate \( \sim p \) and \( \sim q \) Now we will calculate the negations: - For \( \sim p \): - Row 1: \( \sim p = \text{False} \) - Row 2: \( \sim p = \text{False} \) - Row 3: \( \sim p = \text{True} \) - Row 4: \( \sim p = \text{True} \) - For \( \sim q \): - Row 1: \( \sim q = \text{False} \) - Row 2: \( \sim q = \text{True} \) - Row 3: \( \sim q = \text{False} \) - Row 4: \( \sim q = \text{True} \) ### Step 6: Calculate \( \sim p \land \sim q \) Now we will calculate the conjunction of \( \sim p \) and \( \sim q \): - Row 1: \( \sim p \land \sim q = \text{False} \land \text{False} = \text{False} \) - Row 2: \( \sim p \land \sim q = \text{False} \land \text{True} = \text{False} \) - Row 3: \( \sim p \land \sim q = \text{True} \land \text{False} = \text{False} \) - Row 4: \( \sim p \land \sim q = \text{True} \land \text{True} = \text{True} \) ### Final Truth Table Now we can summarize our findings in the truth table: | \( p \) | \( q \) | \( \sim p \) | \( \sim q \) | \( \sim p \land \sim q \) | |---------|---------|---------------|---------------|----------------------------| | True | True | False | False | False | | True | False | False | True | False | | False | True | True | False | False | | False | False | True | True | True |
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (E)|29 Videos
  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (F) |28 Videos
  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (C)|30 Videos
  • MATHEMATICAL INDUCTION

    ICSE|Exercise Exercise (a)|1 Videos
  • MEASURES OF CENTRAL TENDENCY

    ICSE|Exercise EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

construct truth table for p vv(~q)

Construct truth table for ~ [ p vv(~ q)]

Construct the truth table for p ^^ q.

Construct the truth table for [(~p)^^q]implies(pvvq)

Construct truth table for ( p rArr q) ^^ (q rArr p)

construct truth table for (p vv q)vv(r ^^ ~q)

Prove by constructing truth table that (p ^^q) ^^ ~ (p vv q) is fallacy (contradiction)

Construct the truth table (~p ∧ ~q)vv(p∧~q)

Construct a truth table for the statement p ^^ (~q).

Prove by construction of truth table that p vv ~ (p ^^q) is a tautology

ICSE-MATHEMATICAL REASONING-EXERCISE 27 (D)
  1. Let a,b,c and d represent simple statements. Assume that a ^^ d is t...

    Text Solution

    |

  2. Let a,b,c and d represent simple statements. Assume that a ^^ d is t...

    Text Solution

    |

  3. Assume that two given statements p and q are both true and indicate wh...

    Text Solution

    |

  4. Assume that two given statements p and q are both true and indicate wh...

    Text Solution

    |

  5. Assume that two given statements p and q are both true and indicate wh...

    Text Solution

    |

  6. Assume that two given statements p and q are both true and indicate wh...

    Text Solution

    |

  7. construct truth table for (~p)^^ q

    Text Solution

    |

  8. construct truth table for (~p)^^ (~q)

    Text Solution

    |

  9. construct truth table for ~(p ^^ q)

    Text Solution

    |

  10. construct truth table for p vv(~q)

    Text Solution

    |

  11. Construct truth table for ~ [ p vv(~ q)]

    Text Solution

    |

  12. construct truth table for ~(~p ^^ ~q)

    Text Solution

    |

  13. construct truth table for (p ^^q) v (~p ^^ q)

    Text Solution

    |

  14. construct truth table for p ^^ (q vv r)

    Text Solution

    |

  15. construct truth table for (~p ^^ ~q) v(p ^^ ~q)

    Text Solution

    |

  16. construct truth table for (p vv q)vv(r ^^ ~q)

    Text Solution

    |

  17. Let p be " Ananya is beautiful, " and let q be " Ananya is 165 centime...

    Text Solution

    |

  18. Let p be " Ananya is beautiful, " and let q be " Ananya is 165 centime...

    Text Solution

    |

  19. Let p be " Ananya is beautiful, " and let q be " Ananya is 165 centime...

    Text Solution

    |

  20. Let p be " Ananya is beautiful, " and let q be " Ananya is 165 centime...

    Text Solution

    |