Home
Class 11
MATHS
construct truth table for p ^^ (q vv r...

construct truth table for `p ^^ (q vv r)`

Text Solution

AI Generated Solution

The correct Answer is:
To construct the truth table for the logical expression \( p \land (q \lor r) \), we will follow these steps: ### Step 1: Identify the Variables We have three variables: \( p \), \( q \), and \( r \). ### Step 2: Determine the Number of Rows Since we have 3 variables, the number of possible combinations of truth values is \( 2^n \), where \( n \) is the number of variables. Thus, we have \( 2^3 = 8 \) rows in our truth table. ### Step 3: Set Up the Truth Table Structure We will create a table with the following columns: 1. \( p \) 2. \( q \) 3. \( r \) 4. \( q \lor r \) (disjunction of \( q \) and \( r \)) 5. \( p \land (q \lor r) \) (conjunction of \( p \) and \( (q \lor r) \)) ### Step 4: Fill in the Values for \( p \), \( q \), and \( r \) We will fill in the truth values for \( p \), \( q \), and \( r \) in the table. The values will alternate between True (T) and False (F) as follows: | \( p \) | \( q \) | \( r \) | |---------|---------|---------| | T | T | T | | T | T | F | | T | F | T | | T | F | F | | F | T | T | | F | T | F | | F | F | T | | F | F | F | ### Step 5: Calculate \( q \lor r \) Now we will compute the values for \( q \lor r \). The disjunction is true if at least one of \( q \) or \( r \) is true. | \( p \) | \( q \) | \( r \) | \( q \lor r \) | |---------|---------|---------|-----------------| | T | T | T | T | | T | T | F | T | | T | F | T | T | | T | F | F | F | | F | T | T | T | | F | T | F | T | | F | F | T | T | | F | F | F | F | ### Step 6: Calculate \( p \land (q \lor r) \) Finally, we will compute the values for \( p \land (q \lor r) \). The conjunction is true only if both \( p \) and \( (q \lor r) \) are true. | \( p \) | \( q \) | \( r \) | \( q \lor r \) | \( p \land (q \lor r) \) | |---------|---------|---------|-----------------|---------------------------| | T | T | T | T | T | | T | T | F | T | T | | T | F | T | T | T | | T | F | F | F | F | | F | T | T | T | F | | F | T | F | T | F | | F | F | T | T | F | | F | F | F | F | F | ### Final Truth Table Combining all the columns, we have the final truth table: | \( p \) | \( q \) | \( r \) | \( q \lor r \) | \( p \land (q \lor r) \) | |---------|---------|---------|-----------------|---------------------------| | T | T | T | T | T | | T | T | F | T | T | | T | F | T | T | T | | T | F | F | F | F | | F | T | T | T | F | | F | T | F | T | F | | F | F | T | T | F | | F | F | F | F | F |
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (E)|29 Videos
  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (F) |28 Videos
  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (C)|30 Videos
  • MATHEMATICAL INDUCTION

    ICSE|Exercise Exercise (a)|1 Videos
  • MEASURES OF CENTRAL TENDENCY

    ICSE|Exercise EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Construct the truth table for p ^^ q.

construct truth table for p vv(~q)

construct truth table for (~p ^^ ~q) v(p ^^ ~q)

construct truth table for (p ^^q) v (~p ^^ q)

Construct truth table for ~ [ p vv(~ q)]

construct truth table for (p vv q)vv(r ^^ ~q)

Construct truth table for ( p rArr q) ^^ (q rArr p)

Construct truth table for ~[p^^(~q)] and find which implication has same truth value.

Prove by constructing truth table that (p ^^q) ^^ ~ (p vv q) is fallacy (contradiction)

Prove by construction of truth table that p vv ~ (p ^^q) is a tautology