Home
Class 11
MATHS
construct truth table for (~p ^^ ~q) v...

construct truth table for `(~p ^^ ~q) v(p ^^ ~q)`

Text Solution

AI Generated Solution

The correct Answer is:
To construct the truth table for the expression `(~p ∧ ~q) ∨ (p ∧ ~q)`, we will follow these steps: ### Step 1: Identify the Variables We have two variables: \( p \) and \( q \). ### Step 2: Determine the Number of Rows Since we have 2 variables, the number of possible combinations of truth values is \( 2^n = 2^2 = 4 \). Therefore, we will have 4 rows in our truth table. ### Step 3: Create the Truth Table Structure We will create a table with the following columns: 1. \( p \) 2. \( q \) 3. \( \neg p \) (Negation of \( p \)) 4. \( \neg q \) (Negation of \( q \)) 5. \( \neg p \land \neg q \) (Conjunction of \( \neg p \) and \( \neg q \)) 6. \( p \land \neg q \) (Conjunction of \( p \) and \( \neg q \)) 7. \( (\neg p \land \neg q) \lor (p \land \neg q) \) (Disjunction of the previous two results) ### Step 4: Fill in the Values Now we will fill in the truth values for each variable and expression. | \( p \) | \( q \) | \( \neg p \) | \( \neg q \) | \( \neg p \land \neg q \) | \( p \land \neg q \) | \( (\neg p \land \neg q) \lor (p \land \neg q) \) | |---------|---------|--------------|--------------|-----------------------------|-----------------------|----------------------------------------------------| | T | T | F | F | F | F | F | | T | F | F | T | F | T | T | | F | T | T | F | F | F | F | | F | F | T | T | T | F | T | ### Step 5: Analyze the Results - In the first row, both \( p \) and \( q \) are true, so both \( \neg p \) and \( \neg q \) are false. Therefore, \( \neg p \land \neg q \) is false, and \( p \land \neg q \) is also false, resulting in a final value of false. - In the second row, \( p \) is true and \( q \) is false, making \( \neg p \) false and \( \neg q \) true. Hence, \( \neg p \land \neg q \) is false, but \( p \land \neg q \) is true, resulting in a final value of true. - In the third row, \( p \) is false and \( q \) is true, so \( \neg p \) is true and \( \neg q \) is false. Both conjunctions yield false, resulting in a final value of false. - In the fourth row, both \( p \) and \( q \) are false, making both \( \neg p \) and \( \neg q \) true. Thus, \( \neg p \land \neg q \) is true, while \( p \land \neg q \) is false, resulting in a final value of true. ### Final Truth Table The final truth table is: | \( p \) | \( q \) | \( \neg p \) | \( \neg q \) | \( \neg p \land \neg q \) | \( p \land \neg q \) | Final Result | |---------|---------|--------------|--------------|-----------------------------|-----------------------|--------------| | T | T | F | F | F | F | F | | T | F | F | T | F | T | T | | F | T | T | F | F | F | F | | F | F | T | T | T | F | T |
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (E)|29 Videos
  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (F) |28 Videos
  • MATHEMATICAL REASONING

    ICSE|Exercise EXERCISE 27 (C)|30 Videos
  • MATHEMATICAL INDUCTION

    ICSE|Exercise Exercise (a)|1 Videos
  • MEASURES OF CENTRAL TENDENCY

    ICSE|Exercise EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

construct truth table for p vv(~q)

construct truth table for p ^^ (q vv r)

Construct the truth table for p ^^ q.

construct truth table for (p vv q)vv(r ^^ ~q)

Construct truth table for ~ [ p vv(~ q)]

Construct the truth table (~p ∧ ~q)vv(p∧~q)

Construct truth table for ( p rArr q) ^^ (q rArr p)

Prove by constructing truth table that (p ^^q) ^^ ~ (p vv q) is fallacy (contradiction)

Construct a truth table for the statement p ^^ (~q).

Construct the truth table for [(~p)^^q]implies(pvvq)

ICSE-MATHEMATICAL REASONING-EXERCISE 27 (D)
  1. Let a,b,c and d represent simple statements. Assume that a ^^ d is t...

    Text Solution

    |

  2. Let a,b,c and d represent simple statements. Assume that a ^^ d is t...

    Text Solution

    |

  3. Assume that two given statements p and q are both true and indicate wh...

    Text Solution

    |

  4. Assume that two given statements p and q are both true and indicate wh...

    Text Solution

    |

  5. Assume that two given statements p and q are both true and indicate wh...

    Text Solution

    |

  6. Assume that two given statements p and q are both true and indicate wh...

    Text Solution

    |

  7. construct truth table for (~p)^^ q

    Text Solution

    |

  8. construct truth table for (~p)^^ (~q)

    Text Solution

    |

  9. construct truth table for ~(p ^^ q)

    Text Solution

    |

  10. construct truth table for p vv(~q)

    Text Solution

    |

  11. Construct truth table for ~ [ p vv(~ q)]

    Text Solution

    |

  12. construct truth table for ~(~p ^^ ~q)

    Text Solution

    |

  13. construct truth table for (p ^^q) v (~p ^^ q)

    Text Solution

    |

  14. construct truth table for p ^^ (q vv r)

    Text Solution

    |

  15. construct truth table for (~p ^^ ~q) v(p ^^ ~q)

    Text Solution

    |

  16. construct truth table for (p vv q)vv(r ^^ ~q)

    Text Solution

    |

  17. Let p be " Ananya is beautiful, " and let q be " Ananya is 165 centime...

    Text Solution

    |

  18. Let p be " Ananya is beautiful, " and let q be " Ananya is 165 centime...

    Text Solution

    |

  19. Let p be " Ananya is beautiful, " and let q be " Ananya is 165 centime...

    Text Solution

    |

  20. Let p be " Ananya is beautiful, " and let q be " Ananya is 165 centime...

    Text Solution

    |