Home
Class 11
MATHS
Prove that: 2cospi/(13)cos(9pi)/(13)+cos...

Prove that: `2cos``pi/(13)``cos``(9pi)/(13)``+cos``(3pi)/(13)``+cos``(5pi)/(13)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2cos (pi)/(13) cos (9 pi)/(13)(3 pi)/(13)(5 pi)/(13)=0

The value of 2"cos"(pi)/(13)"cos"(9pi)/(13)+"cos"(3pi)/(13)+"cos"(5pi)/(13) is

The expression (cos(10 pi))/(13)+(cos(8 pi))/(13)+(cos(3 pi))/(13)+(cos(5 pi))/(13)

Prove that: (cos pi)/(5)(cos(2 pi))/(5)(cos(4 pi))/(5)(cos(8 pi))/(5)=(-1)/(6)

Prove that: cos^(2)pi/8 + cos^(2)(3pi)/(8) + cos^(2)(5pi)/(8)+ cos^(2)(7pi)/(8)=2

Prove that: (sin(8 pi))/(3)(cos(23 pi))/(6)+(cos(13 pi))/(3)(sin(35 pi))/(6)=(1)/(2)

Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0

Prove that (1+"cos" (pi)/10)(1+"cos"(3pi)/10)(1+"cos"(7pi)/10)(1+"cos"(9pi)/10)=1/16 .