Home
Class 12
MATHS
If logx/(y-z)= logy/(z-x)= logz/(x-y) th...

If `logx/(y-z)= logy/(z-x)= logz/(x-y)` then prove that `x^(y+z) y^(z+x) z^(x+y)=1` Also prove that `x^(y+z)+y^(z+x)+z^(x+y) >=3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

if x^(2) + y^(2) = z^(2) then prove that log_(y)(z+x) + log_(y) (z-x)=2

Prove that x^(logy-logz).y^(logz-logx).z^(logx-logy)=1

(If(y+z-x))/((x(y+z-x))/(log y))=(y(z+x-y))/(log y)(z(x+y-z))/(log z), prove that x^(y)y^(x)=z^(x)y^(z)=x^(z)z^(x)

If (y+z-x)/(log x)=y(z+x-y)/(log y)=z(x+y-z)/(log z) Prove that x^(y)y^(x)=z^(y)y^(z)=x^(z)z^(x)

Determinant (x-y)(y-z)(z-x)(x+y+z)

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

Prove that tan(x - y) + tan(y - z) + tan(z - x) = tan(x - y) *tan(y -z)* tan(z -x) .