Home
Class 11
MATHS
Let p=lim(x->0^+)(1+tan^2 sqrt(x))^(1/(2...

Let `p=lim_(x->0^+)(1+tan^2 sqrt(x))^(1/(2x))` then log p is equal to`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p=lim_(x rarr0+)(1+tan^(2)sqrt(x))^(1/2x) then log p is equal to: (1)2(2)1(3)(1)/(2)(4)(1)/(4)

Let p=lim_(x rarr0^(+))(1+tan^(2)sqrt(x))^((1)/(2x)) then log p is equal to ^(x)

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

For alpha>0, let lim_(x rarr pi)(tan2x)/(x-pi)=lim_(x rarr0)((1-cos2 alpha x)^(2))/(x^(4)) then alpha is equal to

lim_(x rarr0)(tan x)/(sqrt(1+sin x)-sqrt(1-sin x)) is equal to

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

lim_(x rarr0)(3sqrt(1+x^(2))-4sqrt(1-2x))/(x+x^(2)) is equal to

lim_(x->0)(e^log(2^x-1)^x-(2^x-1)^(x)*sinx))/(e^(xlogx)) is equal to

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x) is equal to