Home
Class 12
MATHS
Prove : 2(sin^(6)theta+cos^(6)theta)-3(s...

Prove `: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

The value of the expression 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to