Home
Class 11
MATHS
If a=(b-c)Sec theta, Prove that tan thet...

If `a=(b-c)Sec theta`, Prove that `tan theta=(2sqrt(bc))/(b-c)Sin(A)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=(b+c)cos theta then show that sin theta=(2sqrt(bc))/(b+c)cos((A)/(2))

In Delta ABC if a=(b-c)sec theta then (2sqrt(bc))/(b-c)sin((A)/(2))=

In Delta ABC if a=(b-c)sec theta then (2sqrt(b)c)/(b-c)sin((A)/(2))=

If asin^(2)theta+bcos^(2)theta=c , then prove that tan^(2)theta=(c-b)/(a-c)

Ifa sin theta+b cos theta=C, then prove that a cos theta-b sin theta=sqrt(a^(2)+b^(2)-c^(2))

If a sin theta+b cos theta=c then prove that a cos theta-b sin theta=sqrt(a^(2)+b^(2)-c^(2))

If A+B+C=180^(@), then prove that tan^(2)((theta)/(2))=tan((B)/(2))tan((C)/(2))* when cos theta(sin theta+sin theta)=sin A

If a cos theta-b sin theta=c; prove that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)-c^(2))

If alpha and beta are the solution of the equation a sec theta+b tan theta=c then show that tan(alpha+beta)=(2bc)/(b^(2)-c^(2))

If a sec theta+b tan theta=c then (a tan theta+b sec theta)^(2)=