Home
Class 12
MATHS
Prove that t a n^(-1)((cosx)/(1+sinx))=p...

Prove that `t a n^(-1)((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

Simplify tan^(-1).(cosx/(1-sinx))(-pi)/2 lt x lt pi/2

Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x .

tan^(-1) ((cosx - sinx)/(cosx + sinx)) , 0< x < pi

sqrt((1+sinx)/(1-sinx))=tan(pi/4+x/2)

Express each of the following in the simplest form: tan^(-1){(cosx)/(1-sinx)},\ -pi/2

Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .

prove that cos^-1(sinx)= pi/2-x