Home
Class 11
MATHS
Let A = {x : x^(2) - 5x + 6 = 0 } , B...

Let A = `{x : x^(2) - 5x + 6 = 0 } , B = { 2,4} = {4,5}` then`A xx (B cap C)` is

A

`{(2,4),(3,4)}`

B

`{(4,2),(4,3)}`

C

`{(2,4),(3,4),(4,4)}`

D

`{(2,2),(3,3),(4,4),(5,2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the set \( A \), the intersection of sets \( B \) and \( C \), and then compute the Cartesian product \( A \times (B \cap C) \). ### Step 1: Find the set \( A \) The set \( A \) is defined as: \[ A = \{ x : x^2 - 5x + 6 = 0 \} \] We need to solve the quadratic equation \( x^2 - 5x + 6 = 0 \). #
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

If A={x:x^(2)-5x+6=0},B={2,4},C={4,5} then find Axx(BnnC)

if A={1,2,3,4,5},B={2,4,6}and C={3,4,6} , then (Acup B) cap C is

If A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8} and C = {3, 4, 5, 6}, verify: (i) A-(B cup C) =(A-B) cap (A-C) (ii) A-(B cap C) =(A-B) cup (A-C)

Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)| , x!=1,2 & 6, x=1 & 12 , x = 2 then f(x) is continuous on the set (a) R (b) R-{1} (c) R-{2} (d) R-{1,2}

Let A={x : x in R ,\ x >4} and \ B={x in R : x<5} . Then AnnB= (a) (4,5] (b) (4,5) (c) [4,5) (d) [4,5]

(i) Let A={x:x in N, 2 le xle 6} and B=(2,3,4,5,6), then A=B (ii) Let A=(1,3,5) and B=(3,5,1)" then "A=B Let A={1,2,3} andB={1,1,3,2,3}" then "A=B

Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7)x+5 le 0} If A subB, then the range of real number p in [a,b] where, a,b are integers. Find the value of (b-a).

If A = {5, 6, 7, 8, 9}, B={x : 3 lt x lt 8 " and " x in W} and C={x:x le 5 " and " x in N} . Find : (i) A cup B and (A cup B) cup C (ii) B cup C and A cup (B cup C) (iii) A cap B and (A cap B) cap C (iv) B cap C and A cap (B cap C) Is (A cup B) cup C = A cup (B cup C) ? Is (A cap B) cap C) = A cap (B cap C) ?

Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)x+5 le0} If B sube A , then p in