Home
Class 11
MATHS
In A DeltaABC , if a = 2 , b = 3 and s...

In A `DeltaABC ` , if a = 2 , b = 3 and `sin A = 2/3 ` then `angleB` is (a)`90^(@)` (b)`80^(@)` (c)`110^(@)` (d)`140^(@)`

A

`90^(@)`

B

`80^(@)`

C

`110^(@)`

D

`140^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the sine rule in triangle ABC. The sine rule states that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] Given: - \( a = 2 \) - \( b = 3 \) - \( \sin A = \frac{2}{3} \) We need to find \( \angle B \). ### Step 1: Apply the Sine Rule Using the sine rule, we can express \( \sin B \) in terms of \( a \), \( b \), and \( \sin A \): \[ \frac{a}{\sin A} = \frac{b}{\sin B} \] Substituting the known values: \[ \frac{2}{\frac{2}{3}} = \frac{3}{\sin B} \] ### Step 2: Simplify the Left Side Now, simplify the left side: \[ \frac{2}{\frac{2}{3}} = 2 \times \frac{3}{2} = 3 \] So, we have: \[ 3 = \frac{3}{\sin B} \] ### Step 3: Cross Multiply Cross multiplying gives us: \[ 3 \sin B = 3 \] ### Step 4: Solve for \( \sin B \) Dividing both sides by 3: \[ \sin B = 1 \] ### Step 5: Determine \( \angle B \) The sine of an angle is equal to 1 at: \[ B = 90^\circ \] ### Final Answer Thus, the angle \( B \) is: \[ \boxed{90^\circ} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , a = 2, b = 3 and sinA = 2/3 , find angleB .

In a Delta A B C ,\ if\ a=2,\ b=3\ a n d\ sin A=2/3 then find /_B

In a DeltaABC , if a = 3, b=2sqrt(3) and c=sqrt(3) , then A=

In DeltaABC, a = 3, b = 4 and c = 5 , then value of sinA + sin2B + sin3C is

In DeltaABC, a = 3, b = 4 and c = 5 , then value of sinA + sin2B + sin3C is

In DeltaABC , a=3, b=4 and c=5, evaluate sin2C.

In any DeltaABC , sin A + sin B + sin C =

In a DeltaABC , if 4 cos A cos B + sin 2A+sin 2B+sin 2C=4 , then DeltaABC is

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

If in a DeltaABC , c = 3b and C - B = 90°, then tanB=