Home
Class 11
MATHS
The value of cos ( 35^(@) + A)cos ( 35^...

The value of ` cos ( 35^(@) + A)cos ( 35^(@) - B) + sin ( 35^(@) +A)sin ( 35^(@) - B)` is equal to (i) `sin(A+ B) ` (ii) `sin(A - B)` (iii) `cos (A+B)` (iv) `cos(A-B)`

A

`sin(A+ B) `

B

`sin(A - B)`

C

`cos (A+B)`

D

`cos(A-B)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression given: \[ \cos(35^\circ + A) \cos(35^\circ - B) + \sin(35^\circ + A) \sin(35^\circ - B) \] ### Step 1: Identify the Trigonometric Identity We can use the cosine of the sum and difference identity, which states that: \[ \cos(x - y) = \cos x \cos y + \sin x \sin y \] ### Step 2: Apply the Identity In our case, we can set \( x = 35^\circ + A \) and \( y = 35^\circ - B \). Thus, we can rewrite the expression as: \[ \cos((35^\circ + A) - (35^\circ - B)) \] ### Step 3: Simplify the Argument Now, simplify the argument of the cosine: \[ (35^\circ + A) - (35^\circ - B) = 35^\circ + A - 35^\circ + B = A + B \] ### Step 4: Write the Final Result So, we have: \[ \cos(35^\circ + A) \cos(35^\circ - B) + \sin(35^\circ + A) \sin(35^\circ - B) = \cos(A + B) \] ### Conclusion Thus, the value of the expression is: \[ \cos(A + B) \] ### Step 5: Identify the Correct Option From the options provided, the correct answer is: (iii) \( \cos(A + B) \) ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

cos (A +B) + sin (A -B) = 2 sin (45 ^(@) + A) cos ( 45 ^(@) + B).

Evaluate: (cos 55^(@))/(sin 35^(@))+(cot 35^(@))/(tan 55^(@))

If sinA=3/5 and cosB=9/41, 0 < A < pi/2 and 0 < B < pi/2 then find the values of (i) sin(A+B) (ii) sin(A-B) (iii) cos(A+B) (iv) cos(A-B)

Evaluate : (sin 35^(@) cos 55^(@) + cos 35^(@) sin 55^(@))/ (cosec^(2) 10^(@) - tan^(2) 80^(@))

Evaluate : (i) (cos 55^(@))/(sin 35^(@)) + (cot 35^(@))/(tan 55^(@)) (ii) sin 42^(@) sin 48^(@) - cos 42^(@) cos 48^(@)

Evaluate: sin^(2)35^(@)-cos^(2)55^(@)

Prove that (cos A - cos B) ^(2) + (sin A - sin B ) ^(2) = 4 sin ^(2) ((A -B)/( 2 )).

The value of |{:(sin A ,cos A ),(- sin B, cos B):}| , when A = 54^(@) , B = 36^(@) is a) 0 b) 1 c) -1 d) 2

(sin (4A - 2B) + sin (4B - 2 A))/( cos (4 A - 2 B) + cos (4B - 2 A))= tan (A +B)

If = 60^(@) and B=30^(@) , then show that : sin A cos B+ cos A sin B= sin (A+B)