Home
Class 11
MATHS
The argument of the complex number (i/2-...

The argument of the complex number `(i/2-2/i)` is equal to (a)`pi/2` (b)`pi/4` (c)`pi/12` (d)`(3pi)/4`

A

`pi/2`

B

`pi/4`

C

`pi/12`

D

`(3pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \( z = \frac{i}{2} - \frac{2}{i} \), we will follow these steps: ### Step 1: Simplify the complex number We start with the expression: \[ z = \frac{i}{2} - \frac{2}{i} \] To simplify \(-\frac{2}{i}\), we multiply the numerator and denominator by \(i\): \[ -\frac{2}{i} = -\frac{2i}{i^2} = -\frac{2i}{-1} = 2i \] Now we can rewrite \(z\): \[ z = \frac{i}{2} + 2i \] ### Step 2: Combine the terms Next, we need to combine the terms: \[ z = \frac{i}{2} + 2i = \frac{i}{2} + \frac{4i}{2} = \frac{5i}{2} \] ### Step 3: Identify the real and imaginary parts Now, we identify the real part \(a\) and the imaginary part \(b\) of the complex number: \[ a = 0, \quad b = \frac{5}{2} \] ### Step 4: Calculate the argument The argument \(\theta\) of a complex number \(z = a + bi\) is given by: \[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \] In our case, since \(a = 0\), we have: \[ \theta = \tan^{-1}\left(\frac{\frac{5}{2}}{0}\right) \] This expression tends to infinity, which corresponds to: \[ \theta = \frac{\pi}{2} \] ### Conclusion Thus, the argument of the complex number \(z\) is: \[ \theta = \frac{\pi}{2} \] So, the correct answer is (a) \(\frac{\pi}{2}\). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

int_0^21/(1+tanx)dx is equal to (pi^)/4 (b) (pi^)/3 (c) (pi^)/2 (d) pi

Find the principal argument of the complex number sin(6pi)/5+i(1+cos(6pi)/5)dot

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

The greatest positive argument of complex number satisfying |z-4|=R e(z) is A. pi/3 B. (2pi)/3 C. pi/2 D. pi/4

int_0^(pi//2)xsinx\ dx is equal to a. pi//2 b. pi//4 c. pi d. 1

The ratio of the perimeter (circumference) and diameter of a circle is (a) pi\ (b) 2pi (c) pi/2 (d) pi/4

If (costheta+cos2theta)^3=cos^3theta+cos^3 2theta, then the least positive value of theta is equal to pi/6 (b) pi/4 (c) pi/3 (d) pi/2

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

The amplitude of 1/i is equal to a. 0 b. pi/2 c. -pi/2 d. pi

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3