Home
Class 11
MATHS
Evaluate : lim(x to -1) x/([x])...

Evaluate : `lim_(x to -1) x/([x])`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to -1} \frac{x}{[x]} \), where \([x]\) denotes the greatest integer function (also known as the floor function), we will analyze the behavior of the function as \(x\) approaches \(-1\) from both the left and the right. ### Step-by-Step Solution: 1. **Understanding the Greatest Integer Function**: The greatest integer function \([x]\) returns the largest integer less than or equal to \(x\). For example: - If \(x = -1.5\), then \([-1.5] = -2\). - If \(x = -1.0\), then \([-1.0] = -1\). - If \(x = -0.5\), then \([-0.5] = -1\). 2. **Finding the Right-Hand Limit**: We first compute the right-hand limit as \(x\) approaches \(-1\) from the right (\(x \to -1^+\)): \[ \lim_{x \to -1^+} \frac{x}{[x]} \] As \(x\) approaches \(-1\) from the right, \(x\) is slightly greater than \(-1\) (e.g., \(-0.999\)). Therefore, \([x] = -1\). \[ \lim_{x \to -1^+} \frac{x}{[x]} = \lim_{x \to -1^+} \frac{x}{-1} = \lim_{x \to -1^+} -x = -(-1) = 1 \] 3. **Finding the Left-Hand Limit**: Next, we compute the left-hand limit as \(x\) approaches \(-1\) from the left (\(x \to -1^-\)): \[ \lim_{x \to -1^-} \frac{x}{[x]} \] As \(x\) approaches \(-1\) from the left, \(x\) is slightly less than \(-1\) (e.g., \(-1.001\)). Therefore, \([x] = -2\). \[ \lim_{x \to -1^-} \frac{x}{[x]} = \lim_{x \to -1^-} \frac{x}{-2} = \lim_{x \to -1^-} -\frac{x}{2} = -\frac{-1}{2} = \frac{1}{2} \] 4. **Comparing the Limits**: We have: - Right-hand limit: \(1\) - Left-hand limit: \(\frac{1}{2}\) Since the left-hand limit and the right-hand limit are not equal, we conclude that the limit does not exist. ### Final Conclusion: \[ \lim_{x \to -1} \frac{x}{[x]} \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x to 1) (x^(m)-1)/(x^(n)-1)

Evaluate lim_(x to 1) ((1)/(x^(2) + x - 2) - (x)/(x^(3) - 1))

Evaluate lim_(x to 0) (k^([x]) - 1- |x| In K)/(x^(2)) , k gt 0

Evaluate lim_(x to 1) (x^(3) - 1)/(x - 1)

Evaluate : lim_(x to 0) (e^(x)-1)/x

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate : lim_(x to 0) (e^(cos x)-1)/(cos x)

Evaluate : lim_(x rarr1) (logx /(x - 1))

Evaluate : lim_(x to 0 ) ((1+6x^(2))/(1+4x^(2)))^(1/(x^(2)))