Home
Class 11
MATHS
For a positive integer n , find the valu...

For a positive integer n , find the value of `(1-i)^(n) (1 - 1/i)^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1-i)^{n} \cdot (1 - \frac{1}{i})^{n}\) for a positive integer \(n\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (1-i)^{n} \cdot \left(1 - \frac{1}{i}\right)^{n} \] ### Step 2: Simplify \(1 - \frac{1}{i}\) To simplify \(1 - \frac{1}{i}\), we can multiply and divide by \(i\): \[ 1 - \frac{1}{i} = 1 - \left(-i\right) = 1 + i \] Thus, we have: \[ \left(1 - \frac{1}{i}\right) = 1 + i \] ### Step 3: Substitute back into the expression Now we can substitute this back into our expression: \[ (1-i)^{n} \cdot (1+i)^{n} \] ### Step 4: Combine the terms We can combine the terms: \[ ((1-i)(1+i))^{n} \] ### Step 5: Use the difference of squares Using the identity \(a^2 - b^2 = (a-b)(a+b)\), we have: \[ (1-i)(1+i) = 1^2 - i^2 \] Since \(i^2 = -1\), we can simplify this to: \[ 1 - (-1) = 1 + 1 = 2 \] ### Step 6: Raise to the power of \(n\) Now, substituting this back, we have: \[ (2)^{n} \] ### Final Answer Thus, the final value of the expression \((1-i)^{n} \cdot (1 - \frac{1}{i})^{n}\) is: \[ 2^{n} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER 14

    ICSE|Exercise SECTION C |10 Videos

Similar Questions

Explore conceptually related problems

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n) ?

What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n)?

If A is a nilpotent matrix of index 2, then for any positive integer n ,A(I+A)^n is equal to (a) A^(-1) (b) A (c) A^n (d) I_n

Find the smallest positive integer value of n for which ((1+i)^n)/((1-i)^(n-2)) is a real number.

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i^5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

For a positive integer n, let I _(n) int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx Find the value of [I _(1) + I _(3) +I_(4)] where [.] denotes greatest integer function.