Home
Class 11
MATHS
If x is real , then the minimum value o...

If x is real , then the minimum value of `(x^(2)-3x+4)/(x^(2)+3x+4) ` is :

A

7

B

`-1/7`

C

`-7`

D

`1/7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(\frac{x^2 - 3x + 4}{x^2 + 3x + 4}\), we will follow these steps: ### Step 1: Set up the equation Let: \[ y = \frac{x^2 - 3x + 4}{x^2 + 3x + 4} \] We can rearrange this to: \[ y(x^2 + 3x + 4) = x^2 - 3x + 4 \] ### Step 2: Rearrange the equation Rearranging gives us: \[ yx^2 + 3yx + 4y - x^2 + 3x - 4 = 0 \] Combining like terms, we get: \[ (y - 1)x^2 + (3y + 3)x + (4y - 4) = 0 \] ### Step 3: Use the discriminant condition For \(x\) to be real, the discriminant of this quadratic equation must be non-negative. The discriminant \(D\) is given by: \[ D = b^2 - 4ac \] where \(a = y - 1\), \(b = 3y + 3\), and \(c = 4y - 4\). Calculating the discriminant: \[ D = (3y + 3)^2 - 4(y - 1)(4y - 4) \] ### Step 4: Expand and simplify the discriminant Expanding \(D\): \[ D = (3y + 3)^2 - 4[(y - 1)(4y - 4)] \] \[ = 9y^2 + 18y + 9 - 4[4y^2 - 4y - 4] \] \[ = 9y^2 + 18y + 9 - (16y^2 - 16y - 16) \] \[ = 9y^2 + 18y + 9 - 16y^2 + 16y + 16 \] \[ = -7y^2 + 34y + 25 \] ### Step 5: Set the discriminant \(\geq 0\) We need: \[ -7y^2 + 34y + 25 \geq 0 \] ### Step 6: Solve the quadratic inequality To find the roots of the equation: \[ -7y^2 + 34y + 25 = 0 \] Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-34 \pm \sqrt{34^2 - 4(-7)(25)}}{2(-7)} \] Calculating the discriminant: \[ 34^2 - 4(-7)(25) = 1156 + 700 = 1856 \] Now substituting back: \[ y = \frac{-34 \pm \sqrt{1856}}{-14} \] Calculating \(\sqrt{1856} \approx 43.1\): \[ y = \frac{-34 \pm 43.1}{-14} \] Calculating the two values: 1. \(y_1 = \frac{-34 + 43.1}{-14} \approx -0.65\) 2. \(y_2 = \frac{-34 - 43.1}{-14} \approx 5.5\) ### Step 7: Determine the minimum value The minimum value of \(y\) occurs at: \[ y = \frac{1}{7} \quad \text{and} \quad y = 7 \] Thus, the minimum value of \(\frac{x^2 - 3x + 4}{x^2 + 3x + 4}\) is: \[ \boxed{\frac{1}{7}} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-2

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-7

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If x is real, find the minimum value of x^(2)-8x+ 17

The minimum value of (x^(2)+2x+4)/(x+2) , is

If x is real, the minimum value of x^(2) - 8 x + 17 is

If x is real, then minimum vlaue of (3x ^(2) + 9x +17)/(3x ^(2) +9x+7) is:

If x be real, find the maximum value of ((x+2))/(2x^(2)+3x+6) .

If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is (a) (17)/(7) (b) (1)/(4) (c) 41 (d) 1

If x is real, then the minimum value of the expression x^2-8x+17 is

If x is real, then the minimum value of the expression x^2-8x+17 is

The minimum value of 4^(x)+4^(2-x),x in R is

If x be real, prove that the value of (2x^(2)-2x+4)/(x^(2)-4x+3) cannot lie between -7 and 1.