Home
Class 11
MATHS
Find the value of theta, " if " m^(2) si...

Find the value of `theta, " if " m^(2) sin . Pi/2 - n^(2) sin . (3pi)/2 + 2 mn sec theta = (m-n)^(2) , 0 le theta le pi ` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m^2 \sin \frac{\pi}{2} - n^2 \sin \frac{3\pi}{2} + 2mn \sec \theta = (m-n)^2 \), we will follow these steps: ### Step 1: Substitute the values of sine We know that: \[ \sin \frac{\pi}{2} = 1 \quad \text{and} \quad \sin \frac{3\pi}{2} = -1 \] Substituting these values into the equation gives: \[ m^2(1) - n^2(-1) + 2mn \sec \theta = (m-n)^2 \] This simplifies to: \[ m^2 + n^2 + 2mn \sec \theta = (m-n)^2 \] ### Step 2: Expand the right-hand side Now, we expand \( (m-n)^2 \): \[ (m-n)^2 = m^2 - 2mn + n^2 \] So, we can rewrite the equation as: \[ m^2 + n^2 + 2mn \sec \theta = m^2 - 2mn + n^2 \] ### Step 3: Simplify the equation Now, we can cancel \( m^2 \) and \( n^2 \) from both sides: \[ 2mn \sec \theta = -2mn \] ### Step 4: Divide by \( 2mn \) Assuming \( mn \neq 0 \), we can divide both sides by \( 2mn \): \[ \sec \theta = -1 \] ### Step 5: Find the value of \( \theta \) The secant function is defined as: \[ \sec \theta = \frac{1}{\cos \theta} \] Thus, \( \sec \theta = -1 \) implies: \[ \cos \theta = -1 \] The value of \( \theta \) for which \( \cos \theta = -1 \) in the interval \( [0, \pi] \) is: \[ \theta = \pi \] ### Final Answer The value of \( \theta \) is: \[ \theta = \pi \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-2

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-7

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Find all the values of theta satisfying the equation sin theta + sin 5 theta = sin 3 theta, such that 0 le theta le pi.

Find all the value of theta satisfying the equation , sin 7 theta = sin theta + sin 3 theta such that 0 le theta le pi

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

Find the values of cos theta and tan theta when sin theta =-3/5 and pi < theta < (3pi)/2

Find the general solution of tan ^(2) theta = (1)/(3), and hence find those values of theta for which - pi le theta le pi.

If cos theta=12/13 , and (3pi)/2 le theta lt 2pi , then tan theta = ?

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .