Home
Class 11
MATHS
Differentiate w.r.t 'x' f(x) = (sqrt(x^(...

Differentiate w.r.t `'x' f(x) = (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}} \) with respect to \( x \), we will follow these steps: ### Step 1: Rationalize the Denominator To simplify the function, we can rationalize the denominator. We multiply the numerator and denominator by the conjugate of the denominator: \[ f(x) = \frac{\left(\sqrt{x^2 + 1} + \sqrt{x^2 - 1}\right) \left(\sqrt{x^2 + 1} + \sqrt{x^2 - 1}\right)}{\left(\sqrt{x^2 + 1} - \sqrt{x^2 - 1}\right) \left(\sqrt{x^2 + 1} + \sqrt{x^2 - 1}\right)} \] This gives us: \[ f(x) = \frac{(\sqrt{x^2 + 1})^2 - (\sqrt{x^2 - 1})^2}{(\sqrt{x^2 + 1})^2 - (\sqrt{x^2 - 1})^2} \] ### Step 2: Simplify the Expression Now, simplify the numerator and denominator: \[ f(x) = \frac{x^2 + 1 - (x^2 - 1)}{(\sqrt{x^2 + 1})^2 - (\sqrt{x^2 - 1})^2} \] This simplifies to: \[ f(x) = \frac{2}{(\sqrt{x^2 + 1})^2 - (\sqrt{x^2 - 1})^2} \] ### Step 3: Further Simplification The denominator can be simplified using the difference of squares: \[ (\sqrt{x^2 + 1})^2 - (\sqrt{x^2 - 1})^2 = (x^2 + 1) - (x^2 - 1) = 2 \] Thus, we have: \[ f(x) = \frac{2}{2} = 1 \] ### Step 4: Differentiate the Function Now that we have simplified \( f(x) \) to a constant \( 1 \), we can differentiate it: \[ f'(x) = 0 \] ### Final Answer The derivative of the function \( f(x) \) with respect to \( x \) is: \[ f'(x) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-2

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-7

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x e^(5x)

Differentiate w.r.t x sin^4x

Differentiate w.r.t x tan (x^2)

Differentiate w.r.t x y = 8x^(8)

Differentiate w.r.t y = x^(-2)

Differentiate w.r.t x (x sin x)^(3)

Differentiate w.r.t x sec (sec x)

Differentiate w.r.t x e^("sin x")

Differentiate w.r.t x , y = x^(sinx)

Differentiate w.r.t x e^(x) log (sin 2x)