Home
Class 11
MATHS
Evaluate : lim(x to oo) sqrt(x^(2)+x +1)...

Evaluate : `lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 + 1} \right), \] we can follow these steps: ### Step 1: Rationalize the expression To simplify the expression, we can multiply and divide by the conjugate: \[ \lim_{x \to \infty} \frac{\left( \sqrt{x^2 + x + 1} - \sqrt{x^2 + 1} \right) \left( \sqrt{x^2 + x + 1} + \sqrt{x^2 + 1} \right)}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}}. \] ### Step 2: Simplify the numerator Using the difference of squares, the numerator becomes: \[ \lim_{x \to \infty} \frac{(x^2 + x + 1) - (x^2 + 1)}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}}. \] This simplifies to: \[ \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}}. \] ### Step 3: Factor out \(x\) from the square roots Now, we can factor \(x\) out of the square roots in the denominator: \[ \sqrt{x^2 + x + 1} = \sqrt{x^2(1 + \frac{1}{x} + \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}, \] and \[ \sqrt{x^2 + 1} = \sqrt{x^2(1 + \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x^2}}. \] ### Step 4: Substitute back into the limit Substituting these back, we have: \[ \lim_{x \to \infty} \frac{x}{x\left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 + \frac{1}{x^2}}\right)}. \] ### Step 5: Cancel \(x\) We can cancel \(x\) from the numerator and denominator: \[ \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 + \frac{1}{x^2}}}. \] ### Step 6: Evaluate the limit as \(x\) approaches infinity As \(x\) approaches infinity, \(\frac{1}{x}\) and \(\frac{1}{x^2}\) approach 0. Thus, we have: \[ \lim_{x \to \infty} \frac{1}{\sqrt{1 + 0 + 0} + \sqrt{1 + 0}} = \frac{1}{1 + 1} = \frac{1}{2}. \] ### Final Answer Thus, the limit is \[ \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-2

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-7

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

Evaluate lim_(x to oo ) [sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)].

lim_(x rarr oo)x{sqrt(x^(2)+1)-sqrt(x^(2)-1))}

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

Evaluate: lim_(x to2)(sqrt(x^(3)-x-3)-sqrt(x+1))/(x-2)

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)