Home
Class 11
MATHS
The value of (1−ω+ω^2 )^ 5 +(1+ω−ω^ 2 ...

The value of (1−ω+ω^2 )^ 5 +(1+ω−ω^ 2 )^ 5 where ω and ω^ 2 are the complex cube roots of unity, is

A

32

B

16

C

8

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( (1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5 \), where \( \omega \) and \( \omega^2 \) are the complex cube roots of unity. ### Step 1: Understand the properties of cube roots of unity The complex cube roots of unity satisfy the equation: \[ 1 + \omega + \omega^2 = 0 \] From this, we can derive: \[ \omega + \omega^2 = -1 \] \[ \omega^2 = -1 - \omega \] \[ \omega = -1 - \omega^2 \] ### Step 2: Rewrite the expressions We will rewrite the terms \( (1 - \omega + \omega^2) \) and \( (1 + \omega - \omega^2) \) using the properties of \( \omega \). 1. For \( 1 - \omega + \omega^2 \): \[ 1 - \omega + \omega^2 = 1 + \omega^2 - \omega = 1 + (-1 - \omega) - \omega = 1 - 1 - 2\omega = -2\omega \] 2. For \( 1 + \omega - \omega^2 \): \[ 1 + \omega - \omega^2 = 1 + \omega - (-1 - \omega) = 1 + \omega + 1 + \omega = 2 + 2\omega = 2(1 + \omega) \] Since \( 1 + \omega = -\omega^2 \): \[ 1 + \omega - \omega^2 = 2(-\omega^2) = -2\omega^2 \] ### Step 3: Substitute back into the expression Now we substitute back into the original expression: \[ (1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5 = (-2\omega)^5 + (-2\omega^2)^5 \] Calculating each term: \[ (-2\omega)^5 = -32\omega^5 \] \[ (-2\omega^2)^5 = -32(\omega^2)^5 \] ### Step 4: Simplify \( \omega^5 \) and \( (\omega^2)^5 \) Using the property \( \omega^3 = 1 \): \[ \omega^5 = \omega^{3+2} = \omega^2 \] \[ (\omega^2)^5 = (\omega^2)^{3+2} = \omega \] Thus, we have: \[ -32\omega^5 = -32\omega^2 \] \[ -32(\omega^2)^5 = -32\omega \] ### Step 5: Combine the results Now we combine the results: \[ -32\omega^2 - 32\omega = -32(\omega + \omega^2) \] Using \( \omega + \omega^2 = -1 \): \[ -32(-1) = 32 \] ### Final Answer The value of \( (1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5 \) is: \[ \boxed{32} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C |5 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

The area of the triangle (in square units) whose vertices are i , omega and omega^(2) where i=sqrt(-1) and omega, omega^(2) are complex cube roots of unity, is

Value of sum_(k = 1)^(100)(i^(k!) + omega^(k!)) , where i = sqrt(-1) and omega is complex cube root of unity , is :

(1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1)/(omega) where, a,b,c,d, in R and omega is a complex cube root of unity then find the value of sum (1)/(a^(2)-a+1)

If y_(1)=max||z-omega|-|z-omega^(2)|| , where |z|=2 and y_(2)=max||z-omega|-|z-omega^(2)|| , where |z|=(1)/(2) and omega and omega^(2) are complex cube roots of unity, then

The common roots of the equation x^(3) + 2x^(2) + 2x + 1 = 0 and 1+ x^(2008)+ x^(2003) = 0 are (where omega is a complex cube root of unity)

If 1,omega,omega^2 are the cube roots of unity, then /_\ is equal to.....

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

Two dices are rolled and numbers r_(1) and r_(2) are chosen. Let 1+omega^(r_(1))+omega^(r_(2)) =lamda (where omega is a complex cube root of unity). Then

If omega is a cube root of unity, then 1+omega = …..

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .