Home
Class 11
MATHS
If z=(3-sqrt(7)i), then find |z^(-1)|....

If `z=(3-sqrt(7)i)`, then find `|z^(-1)|`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(|z^{-1}|\) for \(z = 3 - \sqrt{7}i\), we can follow these steps: ### Step 1: Find \(z^{-1}\) We start by calculating \(z^{-1}\), which is given by: \[ z^{-1} = \frac{1}{z} = \frac{1}{3 - \sqrt{7}i} \] ### Step 2: Rationalize the denominator To simplify \(\frac{1}{3 - \sqrt{7}i}\), we multiply the numerator and the denominator by the conjugate of the denominator, which is \(3 + \sqrt{7}i\): \[ z^{-1} = \frac{1 \cdot (3 + \sqrt{7}i)}{(3 - \sqrt{7}i)(3 + \sqrt{7}i)} \] ### Step 3: Calculate the denominator Now, we calculate the denominator using the difference of squares: \[ (3 - \sqrt{7}i)(3 + \sqrt{7}i) = 3^2 - (\sqrt{7}i)^2 = 9 - (-7) = 9 + 7 = 16 \] ### Step 4: Write \(z^{-1}\) Now we can write \(z^{-1}\): \[ z^{-1} = \frac{3 + \sqrt{7}i}{16} \] ### Step 5: Find the modulus of \(z^{-1}\) The modulus of a complex number \(a + bi\) is given by \(|z| = \sqrt{a^2 + b^2}\). In our case, we have: \[ a = \frac{3}{16}, \quad b = \frac{\sqrt{7}}{16} \] Thus, \[ |z^{-1}| = \sqrt{\left(\frac{3}{16}\right)^2 + \left(\frac{\sqrt{7}}{16}\right)^2} \] ### Step 6: Calculate \(|z^{-1}|\) Calculating the squares: \[ \left(\frac{3}{16}\right)^2 = \frac{9}{256}, \quad \left(\frac{\sqrt{7}}{16}\right)^2 = \frac{7}{256} \] Adding these: \[ |z^{-1}| = \sqrt{\frac{9}{256} + \frac{7}{256}} = \sqrt{\frac{16}{256}} = \sqrt{\frac{1}{16}} = \frac{1}{4} \] ### Final Answer Thus, the modulus of \(z^{-1}\) is: \[ |z^{-1}| = \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C |5 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If z=(1+7i)/((2-i)^2) , then find |z|?

If Z=(7+i)/(3+4i) , then find Z^14 .

If arg(z-1)=arg(z+3i) , then find (x-1):y , where z=x+iy .

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z_(1) = 4 -I and z_(2) = - 3 + 7i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2)

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))