Home
Class 11
MATHS
Evaluate : cos24^(@)+cos55^(@)+cos125^(@...

Evaluate : `cos24^(@)+cos55^(@)+cos125^(@)+cos204^(@)+cos300^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ \), we can use the properties of cosine and the unit circle. Here’s a step-by-step solution: ### Step 1: Rewrite the cosine terms using angle identities We can use the identity \( \cos(180^\circ - x) = -\cos x \) and \( \cos(180^\circ + x) = -\cos x \) to rewrite some of the terms. - \( \cos 125^\circ = \cos(180^\circ - 55^\circ) = -\cos 55^\circ \) - \( \cos 204^\circ = \cos(180^\circ + 24^\circ) = -\cos 24^\circ \) ### Step 2: Substitute the rewritten terms into the expression Now we can substitute these identities into the original expression: \[ \cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ \] becomes: \[ \cos 24^\circ + \cos 55^\circ - \cos 55^\circ - \cos 24^\circ + \cos 300^\circ \] ### Step 3: Simplify the expression Notice that \( \cos 24^\circ \) and \( -\cos 24^\circ \) cancel each other out, and \( \cos 55^\circ \) and \( -\cos 55^\circ \) also cancel out: \[ 0 + \cos 300^\circ \] ### Step 4: Evaluate \( \cos 300^\circ \) Now we need to evaluate \( \cos 300^\circ \). Since \( 300^\circ \) is in the fourth quadrant, we can use the identity: \[ \cos 300^\circ = \cos(360^\circ - 60^\circ) = \cos 60^\circ = \frac{1}{2} \] ### Final Answer Thus, the final result is: \[ \cos 24^\circ + \cos 55^\circ + \cos 125^\circ + \cos 204^\circ + \cos 300^\circ = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C |5 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

The value of cos 65^(@)cos 55^(@)cos5^(@) is

4 cos 12 ^(@) cos 48^(@) cos 72^(@) = cos 36 ^(@)

Evaluate : cos^(2)76^(@) +cos^(2)16^(@) - cos76^(@).cos16^(@)

Value of cos0^(@). Cos 30^(@) . cos45^(@) . cos60^(@) . Cos90^(@) is __________.

The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), is

Evaluate : (sin 35^(@) cos 55^(@) + cos 35^(@) sin 55^(@))/ (cosec^(2) 10^(@) - tan^(2) 80^(@))

Evaluate: sin^(2)35^(@)-cos^(2)55^(@)

evaluate cos^(-1)cos10

cos 12 ^(@) cos 24 ^(@) cos 36 ^(@) cos 48^(@) cos 72^(@) cos 84^(@) = (1)/(2 ^(6))

cos 20^(@) + cos 100^(@) + cos 140^(@) = 0