Home
Class 11
MATHS
In a triangle ABC , if (b+c)/(11)=(c+a)/...

In a triangle ABC , if `(b+c)/(11)=(c+a)/(12)=(a+b)/(13)`, then cos A=

A

(a)`(19)/(35)`

B

(b)`(5)/(7)`

C

(c)`(1)/(5)`

D

(d)`(11)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given equations**: \[ \frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = \lambda \] 2. **Express \(b+c\), \(c+a\), and \(a+b\) in terms of \(\lambda\)**: \[ b+c = 11\lambda \quad \text{(1)} \] \[ c+a = 12\lambda \quad \text{(2)} \] \[ a+b = 13\lambda \quad \text{(3)} \] 3. **Add equations (1), (2), and (3)**: \[ (b+c) + (c+a) + (a+b) = 11\lambda + 12\lambda + 13\lambda \] This simplifies to: \[ 2(a+b+c) = 36\lambda \] Therefore, we can express \(a+b+c\) as: \[ a+b+c = 18\lambda \quad \text{(4)} \] 4. **Now, we can express \(a\), \(b\), and \(c\) in terms of \(\lambda\)**: - From equation (1): \[ a = (b+c) - (b+c) + a = 18\lambda - 11\lambda = 7\lambda \] - From equation (2): \[ b = (c+a) - (c+a) + b = 18\lambda - 12\lambda = 6\lambda \] - From equation (3): \[ c = (a+b) - (a+b) + c = 18\lambda - 13\lambda = 5\lambda \] 5. **Now we have**: \[ a = 7\lambda, \quad b = 6\lambda, \quad c = 5\lambda \] 6. **Use the cosine rule to find \(\cos A\)**: The cosine rule states: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] 7. **Substituting the values of \(a\), \(b\), and \(c\)**: \[ b^2 = (6\lambda)^2 = 36\lambda^2 \] \[ c^2 = (5\lambda)^2 = 25\lambda^2 \] \[ a^2 = (7\lambda)^2 = 49\lambda^2 \] 8. **Substituting into the cosine formula**: \[ \cos A = \frac{36\lambda^2 + 25\lambda^2 - 49\lambda^2}{2 \cdot (6\lambda)(5\lambda)} \] Simplifying the numerator: \[ \cos A = \frac{36\lambda^2 + 25\lambda^2 - 49\lambda^2}{60\lambda^2} \] \[ = \frac{12\lambda^2}{60\lambda^2} \] \[ = \frac{12}{60} = \frac{1}{5} \] 9. **Final result**: \[ \cos A = \frac{1}{5} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos
  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C |5 Videos

Similar Questions

Explore conceptually related problems

With usual notations, if in a triangle ABC (b+c)/(11) = (c+a)/(12) = (a+b)/(13) , then cos A : cos B : cos C is :

With usual notations, if in a triangle A B C(b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then prove that: (cosA)/7=(cosB)/(19)=(cosC)/(25)

With usual notion, if in triangle A B C , (b+c)/(11)=(c+a)/(12)=(a+b)/(13),t h e np rov et h a t (cosA)/7=(cosB)/(19)=(cosC)/(25)

If in a triangle ABC , (b+c)/11=(c+a)/12=(a+b)/13 then cosA is equal to

In any DeltaA B C ,(b+c)/(12)=(c+a)/(13)=(a+b)/(15),\ then prove that (cos A)/2=(cos B)/7=(cos C)/(11)dot

In a triangle ABC, a (b cos C - c cos B) =

If in a triangle ABC, (s-a)/11=(s-b)/12=(s-c)/13. Then 429cot^2 ( A/2 ) is equal to

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC, if 2a cos ((B-C)/(2))=b+c , then secA is equal to :

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is