Home
Class 11
MATHS
Using definition , find the derivative o...

Using definition , find the derivative of `f(x)=sinsqrt(x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = \sin(\sqrt{x}) \) using the definition of the derivative, we will follow these steps: ### Step 1: Write the definition of the derivative The derivative of a function \( f(x) \) at a point \( x \) is defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Substitute \( f(x) \) and \( f(x+h) \) Given \( f(x) = \sin(\sqrt{x}) \), we need to find \( f(x+h) \): \[ f(x+h) = \sin(\sqrt{x+h}) \] Now, substituting into the derivative definition: \[ f'(x) = \lim_{h \to 0} \frac{\sin(\sqrt{x+h}) - \sin(\sqrt{x})}{h} \] ### Step 3: Use the sine subtraction formula We can use the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Let \( A = \sqrt{x+h} \) and \( B = \sqrt{x} \). Then: \[ f'(x) = \lim_{h \to 0} \frac{2 \cos\left(\frac{\sqrt{x+h} + \sqrt{x}}{2}\right) \sin\left(\frac{\sqrt{x+h} - \sqrt{x}}{2}\right)}{h} \] ### Step 4: Simplify the expression Now we need to simplify \( \frac{\sqrt{x+h} - \sqrt{x}}{h} \). We can rationalize this: \[ \sqrt{x+h} - \sqrt{x} = \frac{(x+h) - x}{\sqrt{x+h} + \sqrt{x}} = \frac{h}{\sqrt{x+h} + \sqrt{x}} \] Thus, \[ \frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{1}{\sqrt{x+h} + \sqrt{x}} \] ### Step 5: Substitute back into the limit Now substituting this back into our limit: \[ f'(x) = \lim_{h \to 0} 2 \cos\left(\frac{\sqrt{x+h} + \sqrt{x}}{2}\right) \cdot \frac{1}{\sqrt{x+h} + \sqrt{x}} \cdot \frac{h}{h} \] As \( h \to 0 \), \( \sqrt{x+h} \to \sqrt{x} \): \[ f'(x) = 2 \cos\left(\sqrt{x}\right) \cdot \frac{1}{2\sqrt{x}} = \frac{\cos(\sqrt{x})}{\sqrt{x}} \] ### Final Answer Thus, the derivative of \( f(x) = \sin(\sqrt{x}) \) is: \[ f'(x) = \frac{\cos(\sqrt{x})}{\sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos
  • MOCK TEST PAPER-2021

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C |5 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of f(x)=x^4

Find the derivative of f(x)=x^2

Find the derivative of f(x)=sinx-cosx

Find the derivative of f(x) =1/x

Find the derivative if f(x)=sinx+cosx

Find the derivative of f(x) =(x+1)/x .

Find the derivative of f(x)=e^x(x^2+1)

Find the derivative of f(x)=x at x=2.

Find the derivative of f(x)= tanx at x=0.

Find the derivative of f(x)=5x at x=2.