Home
Class 11
MATHS
lim(x rarr 1)(x^(1//3) - 1)/(x^(1//6)-1)...

`lim_(x rarr 1)(x^(1//3) - 1)/(x^(1//6)-1)` is equal to

A

1

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \frac{x^{1/3} - 1}{x^{1/6} - 1} \), we can follow these steps: ### Step 1: Substitute the limit First, we will substitute \( x = 1 \) into the expression: \[ \frac{1^{1/3} - 1}{1^{1/6} - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0} \] This results in an indeterminate form \( \frac{0}{0} \), so we need to apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: - The numerator \( x^{1/3} - 1 \) differentiates to: \[ \frac{d}{dx}(x^{1/3}) = \frac{1}{3}x^{-2/3} \] - The denominator \( x^{1/6} - 1 \) differentiates to: \[ \frac{d}{dx}(x^{1/6}) = \frac{1}{6}x^{-5/6} \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 1} \frac{\frac{1}{3} x^{-2/3}}{\frac{1}{6} x^{-5/6}} \] ### Step 4: Simplify the expression This simplifies to: \[ \lim_{x \to 1} \frac{\frac{1}{3}}{\frac{1}{6}} \cdot \frac{x^{-2/3}}{x^{-5/6}} = \lim_{x \to 1} \frac{1}{3} \cdot \frac{6}{1} \cdot x^{(5/6 - 2/3)} \] Now, we need to simplify the exponent: \[ 5/6 - 2/3 = 5/6 - 4/6 = 1/6 \] So we have: \[ \lim_{x \to 1} \frac{6}{3} \cdot x^{1/6} = \lim_{x \to 1} 2 \cdot x^{1/6} \] ### Step 5: Evaluate the limit Now substituting \( x = 1 \): \[ 2 \cdot 1^{1/6} = 2 \] Thus, the limit is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 1//2) (8x^(3) - 1)/(16 x^(4) - 1) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

lim_(x rarr0)(1+2x)^(5/x)

lim_(x rarr0)(1/x)^(1-cos x)

lim_(x rarr 0)(sqrt(1-x)-1)/(x)=-(1)/(2)

lim_(x rarr oo)((log x)/(x))^(1/x)

lim_(x rarr 0)((3^(x)-1)/(sqrt(1+x)-1))

1. lim_(x rarr0)(sin^(-1)x-sin x)/(x^(3))

The value of lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

lim_(x rarr oo)(log(1+x))/(x)