Home
Class 11
MATHS
Differentiate w.r.t. 'x' : f(x) = log((a...

Differentiate w.r.t. 'x' : f(x) = `log((a+b sin x)/(a - b sin x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \log\left(\frac{a + b \sin x}{a - b \sin x}\right) \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the function Let \( y = f(x) = \log\left(\frac{a + b \sin x}{a - b \sin x}\right) \). ### Step 2: Apply the logarithmic property Using the property of logarithms, we can rewrite the function as: \[ y = \log(a + b \sin x) - \log(a - b \sin x) \] ### Step 3: Differentiate both terms Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[\log(a + b \sin x)] - \frac{d}{dx}[\log(a - b \sin x)] \] Using the derivative of \( \log(u) \) which is \( \frac{1}{u} \cdot \frac{du}{dx} \), we get: \[ \frac{dy}{dx} = \frac{1}{a + b \sin x} \cdot (b \cos x) - \frac{1}{a - b \sin x} \cdot (-b \cos x) \] ### Step 4: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = \frac{b \cos x}{a + b \sin x} + \frac{b \cos x}{a - b \sin x} \] ### Step 5: Combine the fractions To combine these fractions, we find a common denominator: \[ \frac{dy}{dx} = b \cos x \left(\frac{(a - b \sin x) + (a + b \sin x)}{(a + b \sin x)(a - b \sin x)}\right) \] This simplifies to: \[ \frac{dy}{dx} = b \cos x \left(\frac{2a}{a^2 - b^2 \sin^2 x}\right) \] ### Step 6: Final result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{2ab \cos x}{a^2 - b^2 \sin^2 x} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x tan (x^2)

Differentiate w.r.t x sin^4x

Differentiate w.r.t x sec (sec x)

Differentiate w.r.t x e^(5x)

Differentiate w.r.t x y = 8x^(8)

Differentiate w.r.t x : sin (x^(3))

Differentiate w.r.t y = x^(-2)

Differentiate w.r.t y = x^(10)

Differentiate w.r.t x e^("sin x")

Differentiate w.r.t x e^(x) log (sin 2x)