Home
Class 11
MATHS
Solve : 7 sin^(2) theta + 3 cos^(2) thet...

Solve : `7 sin^(2) theta + 3 cos^(2) theta = 4`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 7 \sin^2 \theta + 3 \cos^2 \theta = 4 \), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] We can express \( \cos^2 \theta \) in terms of \( \sin^2 \theta \): \[ \cos^2 \theta = 1 - \sin^2 \theta \] ### Step 2: Substitute in the Original Equation Substituting \( \cos^2 \theta \) in the original equation: \[ 7 \sin^2 \theta + 3(1 - \sin^2 \theta) = 4 \] This simplifies to: \[ 7 \sin^2 \theta + 3 - 3 \sin^2 \theta = 4 \] ### Step 3: Combine Like Terms Combine the terms involving \( \sin^2 \theta \): \[ (7 - 3) \sin^2 \theta + 3 = 4 \] This simplifies to: \[ 4 \sin^2 \theta + 3 = 4 \] ### Step 4: Isolate \( \sin^2 \theta \) Now, isolate \( \sin^2 \theta \): \[ 4 \sin^2 \theta = 4 - 3 \] \[ 4 \sin^2 \theta = 1 \] \[ \sin^2 \theta = \frac{1}{4} \] ### Step 5: Solve for \( \sin \theta \) Taking the square root of both sides gives: \[ \sin \theta = \pm \frac{1}{2} \] ### Step 6: Find the General Solutions The angles for which \( \sin \theta = \frac{1}{2} \) are: \[ \theta = \frac{\pi}{6} + 2n\pi \quad \text{and} \quad \theta = \frac{5\pi}{6} + 2n\pi \] The angles for which \( \sin \theta = -\frac{1}{2} \) are: \[ \theta = \frac{7\pi}{6} + 2n\pi \quad \text{and} \quad \theta = \frac{11\pi}{6} + 2n\pi \] ### Final Answer Thus, the general solutions for \( \theta \) are: \[ \theta = \frac{\pi}{6} + 2n\pi, \quad \frac{5\pi}{6} + 2n\pi, \quad \frac{7\pi}{6} + 2n\pi, \quad \frac{11\pi}{6} + 2n\pi \] where \( n \) is any integer.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(2) theta gt cos^(2) theta .

Solve sin^(2) theta gt cos^(2) theta .

Solve 7 cos^(2) theta+3 sin^(2) theta=4 .

Solve : sqrt3 sin theta - cos theta = sqrt2.

Solve 2 cos^(2) theta = 3 sin theta

Solve sin 3 theta-sin theta=4 cos^(2) theta-2 .

Solve: sin 2 theta = cos 3 theta.

Solve 2 cos^(2) theta +3 sin theta=0 .

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta