Home
Class 11
MATHS
Evaluate : "sin" (8 pi)/(3) "cos" (23 pi...

Evaluate : `"sin" (8 pi)/(3) "cos" (23 pi)/(6) + "cos" (13 pi)/(3) "sin" (35 pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin\left(\frac{8\pi}{3}\right) \cos\left(\frac{23\pi}{6}\right) + \cos\left(\frac{13\pi}{3}\right) \sin\left(\frac{35\pi}{6}\right) \), we can follow these steps: ### Step 1: Simplify the angles We first need to simplify the angles to find their equivalent angles within the range of \(0\) to \(2\pi\). 1. **For \( \frac{8\pi}{3} \)**: \[ \frac{8\pi}{3} = 2\pi + \frac{2\pi}{3} \quad \text{(which is equivalent to } \frac{2\pi}{3} \text{)} \] 2. **For \( \frac{23\pi}{6} \)**: \[ \frac{23\pi}{6} = 3\pi + \frac{5\pi}{6} \quad \text{(which is equivalent to } \frac{5\pi}{6} \text{)} \] 3. **For \( \frac{13\pi}{3} \)**: \[ \frac{13\pi}{3} = 4\pi + \frac{\pi}{3} \quad \text{(which is equivalent to } \frac{\pi}{3} \text{)} \] 4. **For \( \frac{35\pi}{6} \)**: \[ \frac{35\pi}{6} = 5\pi + \frac{5\pi}{6} \quad \text{(which is equivalent to } \frac{5\pi}{6} \text{)} \] ### Step 2: Substitute the simplified angles into the expression Now we substitute the simplified angles back into the expression: \[ \sin\left(\frac{2\pi}{3}\right) \cos\left(\frac{5\pi}{6}\right) + \cos\left(\frac{\pi}{3}\right) \sin\left(\frac{5\pi}{6}\right) \] ### Step 3: Evaluate the trigonometric functions Next, we evaluate the trigonometric functions: 1. **For \( \sin\left(\frac{2\pi}{3}\right) \)**: \[ \sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] 2. **For \( \cos\left(\frac{5\pi}{6}\right) \)**: \[ \cos\left(\frac{5\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2} \] 3. **For \( \cos\left(\frac{\pi}{3}\right) \)**: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] 4. **For \( \sin\left(\frac{5\pi}{6}\right) \)**: \[ \sin\left(\frac{5\pi}{6}\right) = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] ### Step 4: Substitute and simplify Now, we substitute these values back into the expression: \[ \frac{\sqrt{3}}{2} \left(-\frac{\sqrt{3}}{2}\right) + \frac{1}{2} \left(\frac{1}{2}\right) \] This simplifies to: \[ -\frac{3}{4} + \frac{1}{4} = -\frac{3}{4} + \frac{1}{4} = -\frac{2}{4} = -\frac{1}{2} \] ### Final Answer Thus, the final answer is: \[ -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER - 20

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin ((8pi)/3) cos ((23pi)/6)+cos ((13pi)/3) sin ((35pi)/6)=1/2

Evaluate : 8 cos ^(3) ""(pi)/(9)- 6cos ""(pi)/(9)

2 cos ""(pi)/(13) cos ""(9pi)/(13) + cos ""(3pi)/(13) + cos "" (5pi)/(13) = 0.

Find the incentre of a triangle formed by the lines x "cos" (pi)/(9) + y "sin" (pi)/(9) = pi, x "cos" (8pi)/(9)+ y "sin" (8pi)/(9) = pi " and x "cos" (13pi)/(9) + y "sin" ((13pi)/(9)) = pi.

Prove that: 2cos pi/(13) cos (9pi)/(13) +cos (3pi)/(13) +cos (5pi)/(13)=0

Evaluate : cos ""(pi)/(8) sin ""(pi)/(8)

The value of 2"sin"^(2)(pi)/(6)+"cosec"^(2)(7pi)/(6)."cos"^(2)(pi)/(3) is equal to

2sin((2 pi)/(6))+cosec^(2)((pi)/(6))*cos^(2)((pi)/(3))=?

2sin^(2)""(pi)/(6)+cosec^(2)""(7pi)/(6) cos^(2)""(pi)/(3)=(3)/(2)

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)