Home
Class 12
MATHS
The projection of vector veca=2hati+3hat...

The projection of vector `veca=2hati+3hatj+2hatk` along `vecb=hati+2hatj+1hatk` is

A

`(2)/(3)`

B

`(1)/(3)`

C

2

D

`sqrt(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector \(\vec{A} = 2\hat{i} + 3\hat{j} + 2\hat{k}\) along vector \(\vec{B} = \hat{i} + 2\hat{j} + \hat{k}\), we can use the formula for the projection of vector \(\vec{A}\) onto vector \(\vec{B}\): \[ \text{Projection of } \vec{A} \text{ on } \vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|^2} \vec{B} \] ### Step 1: Calculate the dot product \(\vec{A} \cdot \vec{B}\) The dot product of two vectors \(\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) and \(\vec{B} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}\) is given by: \[ \vec{A} \cdot \vec{B} = a_1b_1 + a_2b_2 + a_3b_3 \] Substituting the components of \(\vec{A}\) and \(\vec{B}\): \[ \vec{A} \cdot \vec{B} = (2)(1) + (3)(2) + (2)(1) = 2 + 6 + 2 = 10 \] ### Step 2: Calculate the magnitude of vector \(\vec{B}\) The magnitude of vector \(\vec{B}\) is calculated as follows: \[ |\vec{B}| = \sqrt{b_1^2 + b_2^2 + b_3^2} \] For \(\vec{B} = \hat{i} + 2\hat{j} + \hat{k}\): \[ |\vec{B}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \] ### Step 3: Calculate the projection of \(\vec{A}\) onto \(\vec{B}\) Using the projection formula: \[ \text{Projection of } \vec{A} \text{ on } \vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|^2} \vec{B} \] First, we need to compute \(|\vec{B}|^2\): \[ |\vec{B}|^2 = (\sqrt{6})^2 = 6 \] Now substituting the values into the projection formula: \[ \text{Projection of } \vec{A} \text{ on } \vec{B} = \frac{10}{6} \vec{B} = \frac{5}{3} \vec{B} \] Substituting \(\vec{B}\): \[ \text{Projection of } \vec{A} \text{ on } \vec{B} = \frac{5}{3} (\hat{i} + 2\hat{j} + \hat{k}) = \frac{5}{3}\hat{i} + \frac{10}{3}\hat{j} + \frac{5}{3}\hat{k} \] ### Final Answer The projection of vector \(\vec{A}\) along vector \(\vec{B}\) is: \[ \frac{5}{3}\hat{i} + \frac{10}{3}\hat{j} + \frac{5}{3}\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

The projection of vector veca=2hati+3hatj+2hatk , on the vector vecb=hati+2hatj+hatk is

Find the projection of vector veca=5hati-hatj-3hatk on the vector vecb=hati+hatj+hatk .

Projection of the vector veca=2hati+3hatj-2hatk on the vector vecb=hati+2hatj+3hatk is

Find the projection oif veca=2hati+3hatj+2hatk on the vector vecb=hati+2hatj+hatk .

The vector component of vector vecA =3hati +4hatj +5hatk along vector vecB =hati +hatj +hatk is :

Find the projection of veca=2hati-hatj+hatk and vecb=hati-2hatj+hatk.

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors " "veca=2hati+3hatj-hatk and vecb=hati-2hatj+hatk .

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

Find the resultant of vectors veca=hati-hatj+2hatk and vecb=hati+2hatj-4hatk . Find the unit vector in the direction of the resultant vector.

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk