Home
Class 12
MATHS
If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+...

If y = `sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1)))` then `(dy)/(dx)`=

A

a) `0`

B

b) `1`

C

c) `-1`

D

d) `(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -B (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(-1)((sqrt(x)-1)/(sqrt(x)+1))+cosec^(-1)((sqrt(x)+1)/(sqrt(x)-1)) , then (dy)/(dx) is equal to

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If x=sqrt(1-y^2) , then (dy)/(dx)=

If sqrt(x/y)+sqrt(y/x)=1 , then dy/dx

If y= sin^(-1)(x/(sqrt(1+x^2))) + cos^(-1)(1/(sqrt(1+x^2))) , prove that (dy)/(dx)=(2x)/(1+x^2) .

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx