Home
Class 12
MATHS
If y=[sin""(x)/(2)+cos ""(x)/(2)]^(2),fi...

If `y=[sin""(x)/(2)+cos ""(x)/(2)]^(2)`,find`(dy)/(dx)"at"x (pi)/(6)`

A

`(1)/(2)`

B

`(sqrt(3))/(2)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) of the function \(y = \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)^2\) at \(x = \frac{\pi}{6}\), we will follow these steps: ### Step 1: Expand the function We start with the given function: \[ y = \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)^2 \] Using the formula for the square of a sum, \( (a + b)^2 = a^2 + b^2 + 2ab \), we can expand this: \[ y = \sin^2\left(\frac{x}{2}\right) + \cos^2\left(\frac{x}{2}\right) + 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \] ### Step 2: Simplify using trigonometric identities Using the Pythagorean identity \(\sin^2\theta + \cos^2\theta = 1\) and the double angle identity \(2\sin\theta\cos\theta = \sin(2\theta)\), we can simplify: \[ y = 1 + \sin(x) \] ### Step 3: Differentiate the function Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 0 + \cos(x) = \cos(x) \] ### Step 4: Evaluate the derivative at \(x = \frac{\pi}{6}\) Now we need to find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{6}\): \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{6}} = \cos\left(\frac{\pi}{6}\right) \] We know that \(\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\). ### Final Result Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{6}\) is: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{6}} = \frac{\sqrt{3}}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -B (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If y=(sin x)^(x)+x^(2) find (dy)/(dx)

If (cos"x")^y=(sin y)^x , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

If " " y=(sin(x/2)+cos(x/2))^2, (dy)/(dx) at x=pi/6

If Y = ((2 - 3 cos x)/("sin" x)) , then (dy)/(dx) at x = (pi)/(4) is

If y=sin(x)+"in"(x^(2))+e^(2x)"then"(dy)/(dx) will be :

If sin(x y)+y/x=x^2-y^2 , find (dy)/(dx) .

If y=cos(sinx^2) ,then at x=sqrt((pi)/(2)) , (dy)/(dx)=

y=(5x)^(3cos 2x) then find (dy)/(dx) .