Home
Class 12
MATHS
Without expanding determinant at any sta...

Without expanding determinant at any stage evaluate `|(1,1,1),(a,b,c),(a^(2)-bc,b^(2)-ca,c^(2)-ab)|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \( D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 - bc & b^2 - ca & c^2 - ab \end{vmatrix} \) without expanding it, we will use properties of determinants. ### Step-by-step Solution: 1. **Write the Determinant**: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 - bc & b^2 - ca & c^2 - ab \end{vmatrix} \] 2. **Apply Column Operations**: We will perform the following operations: - \( C_2 \leftarrow C_2 - C_1 \) - \( C_3 \leftarrow C_3 - C_1 \) This gives us: \[ D = \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^2 - bc & (b^2 - ca) - (a^2 - bc) & (c^2 - ab) - (a^2 - bc) \end{vmatrix} \] 3. **Simplify the Second and Third Columns**: The second column becomes: \[ D = \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^2 - bc & b^2 - a^2 + bc - ca & c^2 - a^2 + bc - ab \end{vmatrix} \] 4. **Factor Out Common Terms**: Notice that \( b^2 - a^2 = (b - a)(b + a) \) and \( c^2 - a^2 = (c - a)(c + a) \). We can factor these out: \[ D = (b - a)(c - a) \begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} \] 5. **Evaluate the Determinant**: The determinant of a matrix with a row of zeros is zero: \[ D = (b - a)(c - a) \cdot 0 = 0 \] ### Final Result: Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -B (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

Simply |{:(,a,b,c),(,a^(2),b^(2),c^(2)),(,bc,ca,ab):}|

Without expanding at any stage, prove that |{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

Without expanding at any state, prove that |((1)/(a),a,bc),((1)/(b),b,ca),((1)/(c ),c,ab)|=0

Without expanding at any state, prove that |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|=0

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

Without expanding at any stage, find the value of : |{:(,a,b,c),(,a+2x, b+2y, c+2z),(,x,y,z):}|

Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Without expanding at any stage, prove that |(a-b,1,a),(b-c,1,b),(c-a,1,c)| = |(a,1,b),(b,1,c),(c,1,a)|

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)