Home
Class 12
MATHS
Using L Hospital rule evaluate lim(xrarr...

Using L Hospital rule evaluate `lim_(xrarr0) (e^(x)-1-x)/(x(e^(x)-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)}, \] we can apply L'Hôpital's Rule since both the numerator and denominator approach 0 as \( x \) approaches 0, creating a \( \frac{0}{0} \) indeterminate form. ### Step 1: Differentiate the Numerator and Denominator 1. **Numerator**: \( e^x - 1 - x \) - The derivative of \( e^x \) is \( e^x \). - The derivative of \( -1 \) is \( 0 \). - The derivative of \( -x \) is \( -1 \). - Therefore, the derivative of the numerator is: \[ \frac{d}{dx}(e^x - 1 - x) = e^x - 1. \] 2. **Denominator**: \( x(e^x - 1) \) - We will use the product rule here. Let \( u = x \) and \( v = e^x - 1 \). - The derivative of \( u \) is \( 1 \). - The derivative of \( v \) is \( e^x \). - By the product rule: \[ \frac{d}{dx}(x(e^x - 1)) = u'v + uv' = 1(e^x - 1) + x(e^x) = e^x - 1 + xe^x. \] ### Step 2: Rewrite the Limit Now we can rewrite the limit using the derivatives we found: \[ \lim_{x \to 0} \frac{e^x - 1}{e^x - 1 + xe^x}. \] ### Step 3: Evaluate the Limit Again Now, we substitute \( x = 0 \): - The numerator becomes \( e^0 - 1 = 1 - 1 = 0 \). - The denominator becomes \( e^0 - 1 + 0 \cdot e^0 = 1 - 1 + 0 = 0 \). This is again a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 4: Differentiate Again 1. **Numerator**: \( e^x - 1 \) - The derivative is \( e^x \). 2. **Denominator**: \( e^x - 1 + xe^x \) - The derivative of \( e^x - 1 \) is \( e^x \). - The derivative of \( xe^x \) (using the product rule) is: \[ e^x + xe^x. \] - Therefore, the derivative of the denominator is: \[ e^x + (e^x + xe^x) = 2e^x + xe^x. \] ### Step 5: Rewrite the Limit Again Now we have: \[ \lim_{x \to 0} \frac{e^x}{2e^x + xe^x}. \] ### Step 6: Evaluate the Final Limit Substituting \( x = 0 \): - The numerator becomes \( e^0 = 1 \). - The denominator becomes \( 2e^0 + 0 \cdot e^0 = 2 + 0 = 2 \). Thus, the limit evaluates to: \[ \frac{1}{2}. \] ### Final Answer The limit is \[ \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -B (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Using L' Hospital's rule evaluate: lim_(x to 0) (e^x−1)/x

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Using L'Hospital's rule, evaluate : lim_(xrarr0)((e^(x)-e^(-x)-2x))/(x-"sin"x)

Evaluate: lim_(xrarr0)x^x

Usinfg L' Hospital's rule, evaluate : lim_(xrarr0)(xe^(x)-"log"(1+x))/x^(2)

lim_(xrarr0) ((x+1)^(5)-1)/(x)

Evaluate lim_(xrarr0)((1-cosx))/(x^(2))

Evaluate : lim_(x to 0) (e^(x)-1)/x

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

lim_(xrarr0)((1-cos x)/x^2)