Home
Class 12
MATHS
Using properties of definite integration...

Using properties of definite integration evaluate : `int_(a)^(b) (root(n)x)/(root(n)x+root(n)(a+b-x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{a}^{b} \frac{\sqrt{n} x}{\sqrt{n} x + \sqrt{n} (a + b - x)} \, dx, \] we can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let’s denote the integral as \(I\): \[ I = \int_{a}^{b} \frac{\sqrt{n} x}{\sqrt{n} x + \sqrt{n} (a + b - x)} \, dx. \] Now, we will change the variable in the integral using the property mentioned above: \[ I = \int_{a}^{b} \frac{\sqrt{n} (a + b - x)}{\sqrt{n} (a + b - x) + \sqrt{n} x} \, dx. \] ### Step 2: Simplify the new integral The new integral can be simplified as follows: \[ I = \int_{a}^{b} \frac{\sqrt{n} (a + b - x)}{\sqrt{n} (a + b)} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_{a}^{b} \frac{\sqrt{n} x}{\sqrt{n} x + \sqrt{n} (a + b - x)} \, dx\) 2. \(I = \int_{a}^{b} \frac{\sqrt{n} (a + b - x)}{\sqrt{n} (a + b)} \, dx\) Adding these two equations: \[ 2I = \int_{a}^{b} \left( \frac{\sqrt{n} x}{\sqrt{n} x + \sqrt{n} (a + b - x)} + \frac{\sqrt{n} (a + b - x)}{\sqrt{n} (a + b - x) + \sqrt{n} x} \right) dx. \] ### Step 4: Simplify the sum Notice that the denominators are the same, so we can combine the fractions: \[ 2I = \int_{a}^{b} \frac{\sqrt{n} x + \sqrt{n} (a + b - x)}{\sqrt{n} x + \sqrt{n} (a + b - x)} \, dx. \] This simplifies to: \[ 2I = \int_{a}^{b} 1 \, dx. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ 2I = \int_{a}^{b} 1 \, dx = [x]_{a}^{b} = b - a. \] ### Step 6: Solve for \(I\) Thus, we have: \[ 2I = b - a \implies I = \frac{b - a}{2}. \] ### Final Answer The value of the integral is: \[ \int_{a}^{b} \frac{\sqrt{n} x}{\sqrt{n} x + \sqrt{n} (a + b - x)} \, dx = \frac{b - a}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -B (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_0^a(sqrt(x))/(sqrt(x)+sqrt(a-x))dx

By using the properties of definite integrals, evaluate the integrals int_0^a(sqrt(x))/(sqrt(x)+sqrt(a-x))dx

Using properties of definite integrals, evaluate: int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx

By using the properties of definite integrals, evaluate the integrals int_0^p(sqrt(x))/(sqrt(x)+sqrt(p-x))dx

int\ (root(3)x)(root(5)(1+root(3)(x^4)))dx

By using the properties of definite integrals, evaluate the integrals int_0^1x(1-x)^n dx

By using the properties of definite integrals, evaluate the integrals int_0^(2) xsqrt(2-x)dx

Evaluate: int root(3)(x)root(3)(1+root(3)(x^(4)))dx

By using the properties of definite integrals, evaluate the integrals int_-5^5|x+2|dx

By using the properties of definite integrals, evaluate the integrals int_0^4 |x-1|dx