Home
Class 12
MATHS
If y =log (1+ 2t^(2)+t^(4)), x= tan^(-1)...

If y =log `(1+ 2t^(2)+t^(4)), x= tan^(-1) ` t find `(d^(2)y)/(dx^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) given \(y = \log(1 + 2t^2 + t^4)\) and \(x = \tan^{-1}(t)\), we will follow these steps: ### Step 1: Simplify \(y\) We start with the expression for \(y\): \[ y = \log(1 + 2t^2 + t^4) \] Notice that we can factor the expression inside the logarithm: \[ 1 + 2t^2 + t^4 = (t^2 + 1)^2 \] Thus, we can rewrite \(y\) as: \[ y = \log((t^2 + 1)^2) = 2 \log(t^2 + 1) \] ### Step 2: Differentiate \(y\) with respect to \(t\) Now we find the first derivative \(\frac{dy}{dt}\): \[ \frac{dy}{dt} = 2 \cdot \frac{1}{t^2 + 1} \cdot \frac{d}{dt}(t^2 + 1) = 2 \cdot \frac{1}{t^2 + 1} \cdot 2t = \frac{4t}{t^2 + 1} \] ### Step 3: Differentiate \(x\) with respect to \(t\) Next, we differentiate \(x\): \[ x = \tan^{-1}(t) \] The derivative is: \[ \frac{dx}{dt} = \frac{1}{1 + t^2} \] ### Step 4: Find \(\frac{dy}{dx}\) Using the chain rule, we can find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{4t}{t^2 + 1}}{\frac{1}{1 + t^2}} = 4t \] ### Step 5: Differentiate \(\frac{dy}{dx}\) with respect to \(t\) Now we need to find the second derivative \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] First, we differentiate \(\frac{dy}{dx} = 4t\): \[ \frac{d}{dt}(4t) = 4 \] ### Step 6: Find \(\frac{dt}{dx}\) We already have \(\frac{dx}{dt} = \frac{1}{1 + t^2}\), so: \[ \frac{dt}{dx} = 1 + t^2 \] ### Step 7: Combine to find \(\frac{d^2y}{dx^2}\) Now, substituting back: \[ \frac{d^2y}{dx^2} = 4 \cdot (1 + t^2) \] Thus, the final answer is: \[ \frac{d^2y}{dx^2} = 4(1 + t^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -B (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If y = int_(0)^(x^(2))ln(1+t) , then find (d^(2)y)/(dx^(2))

If y = int_(4)^(4x^(2))t^(4)e^(4t)dt , find (d^(2)y)/(dx^(2))

If x=t^2 and y=t^3 , find (d^2y)/(dx^2) .

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

"Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is