Home
Class 12
MATHS
Prove that |(2ab,a^(2),b^(2)),(a^(2),b^...

Prove that `|(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \left| \begin{array}{ccc} 2ab & a^2 & b^2 \\ a^2 & b^2 & 2ab \\ b^2 & 2ab & a^2 \end{array} \right| = -(a^3 + b^3)^2, \] we will calculate the determinant step by step. ### Step 1: Write the Determinant We start with the determinant: \[ D = \left| \begin{array}{ccc} 2ab & a^2 & b^2 \\ a^2 & b^2 & 2ab \\ b^2 & 2ab & a^2 \end{array} \right|. \] ### Step 2: Row Operations We can simplify the determinant by adding the second and third rows to the first row. This will help us create a simpler form for the first row. \[ R_1 \rightarrow R_1 + R_2 + R_3. \] This gives us: \[ D = \left| \begin{array}{ccc} (a^2 + b^2 + 2ab) & (a^2) & (b^2) \\ (a^2) & (b^2) & (2ab) \\ (b^2) & (2ab) & (a^2) \end{array} \right| = \left| \begin{array}{ccc} (a + b)^2 & a^2 & b^2 \\ a^2 & b^2 & 2ab \\ b^2 & 2ab & a^2 \end{array} \right|. \] ### Step 3: Factor Out Common Terms We can factor out \((a + b)^2\) from the first row: \[ D = (a + b)^2 \left| \begin{array}{ccc} 1 & \frac{a^2}{(a + b)^2} & \frac{b^2}{(a + b)^2} \\ a^2 & b^2 & 2ab \\ b^2 & 2ab & a^2 \end{array} \right|. \] ### Step 4: Column Operations Next, we perform column operations to simplify further. We subtract the first column from the second and third columns: \[ C_2 \rightarrow C_2 - C_1, \quad C_3 \rightarrow C_3 - C_1. \] This results in: \[ D = (a + b)^2 \left| \begin{array}{ccc} 1 & 0 & 0 \\ a^2 & b^2 - a^2 & 2ab - a^2 \\ b^2 & 2ab - b^2 & a^2 - b^2 \end{array} \right|. \] ### Step 5: Calculate the Determinant Now we calculate the determinant of the remaining \(2 \times 2\) matrix: \[ D = (a + b)^2 \left( 1 \cdot \left| \begin{array}{cc} b^2 - a^2 & 2ab - a^2 \\ 2ab - b^2 & a^2 - b^2 \end{array} \right| \right). \] Calculating the determinant: \[ = (a + b)^2 \left( (b^2 - a^2)(a^2 - b^2) - (2ab - a^2)(2ab - b^2) \right). \] ### Step 6: Simplify the Expression After simplifying the expression, we find: \[ D = -(a^3 + b^3)^2. \] ### Conclusion Thus, we have shown that \[ \left| \begin{array}{ccc} 2ab & a^2 & b^2 \\ a^2 & b^2 & 2ab \\ b^2 & 2ab & a^2 \end{array} \right| = -(a^3 + b^3)^2. \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -B (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinant : Prove that |(a^(2), 2ab, b^(2)),(b^(2),a^(2),2ab),(2ab,b^(2),a^(2))| = (a^(3) + b^(3))^(2)

Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Prove that : |{:(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|=4a^(2)b^(2)c^(2)

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

Prove that |axxb|^2 =a^2b^2 - (a.b)^2

Prove that |axxb|^2 =a^2b^2 - (a.b)^2

Using properties of determinants, prove that: |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c-a)(ab+bc+ca)

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Prove: |[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2ab,b^2,a^2]|=(a^3+b^3)^2