Home
Class 12
MATHS
Evaluate int(-1)^(1) (x+|x|+1)/(x^(2)+2|...

Evaluate `int_(-1)^(1) (x+|x|+1)/(x^(2)+2|x|+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-1}^{1} \frac{x + |x| + 1}{x^2 + 2|x| + 1} \, dx, \] we will break it down step by step. ### Step 1: Analyze the integrand The expression \( |x| \) behaves differently based on the sign of \( x \): - For \( x < 0 \): \( |x| = -x \) - For \( x \geq 0 \): \( |x| = x \) Thus, we can split the integral into two parts: \[ I = \int_{-1}^{0} \frac{x - x + 1}{x^2 - 2x + 1} \, dx + \int_{0}^{1} \frac{x + x + 1}{x^2 + 2x + 1} \, dx. \] ### Step 2: Simplify the first integral For \( x \in [-1, 0] \): \[ I_1 = \int_{-1}^{0} \frac{1}{(x - 1)^2} \, dx. \] The denominator simplifies to \( (x + 1)^2 \) because \( x^2 - 2(-x) + 1 = x^2 + 2x + 1 \). ### Step 3: Simplify the second integral For \( x \in [0, 1] \): \[ I_2 = \int_{0}^{1} \frac{2x + 1}{(x + 1)^2} \, dx. \] ### Step 4: Evaluate the first integral Now, we evaluate \( I_1 \): \[ I_1 = \int_{-1}^{0} \frac{1}{(x + 1)^2} \, dx. \] This integral can be solved using the formula for the integral of \( \frac{1}{x^n} \): \[ I_1 = \left[-\frac{1}{x + 1}\right]_{-1}^{0} = -\frac{1}{0 + 1} + \frac{1}{-1 + 1} = -1 + \infty. \] ### Step 5: Evaluate the second integral Now, we evaluate \( I_2 \): \[ I_2 = \int_{0}^{1} \frac{2x + 1}{(x + 1)^2} \, dx. \] This can be split into two parts: \[ I_2 = \int_{0}^{1} \frac{2x}{(x + 1)^2} \, dx + \int_{0}^{1} \frac{1}{(x + 1)^2} \, dx. \] ### Step 6: Solve \( I_2 \) 1. For \( \int_{0}^{1} \frac{2x}{(x + 1)^2} \, dx \), use substitution or integration by parts. 2. For \( \int_{0}^{1} \frac{1}{(x + 1)^2} \, dx \): \[ \int \frac{1}{(x + 1)^2} \, dx = -\frac{1}{x + 1}. \] Evaluating from 0 to 1 gives: \[ \left[-\frac{1}{x + 1}\right]_{0}^{1} = -\frac{1}{2} + 1 = \frac{1}{2}. \] ### Step 7: Combine results Since \( I_1 \) diverges and \( I_2 \) converges, the overall integral \( I \) diverges. Thus, the final result is: \[ I = \text{Diverges}. \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -B (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

Evaluate: int_(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

Evaluate: int_(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

Evaluate: int_(0)^(1)(xe^(x))/(1+x)^(2) dx

Evaluate int_(1)^(2)(dx)/(x(1+x^(2)))

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

Evaluate int_(1)^(2)(dx)/((x+1)(x+2))

Evaluate int(x^2-1)/(x^2+1)dx

Evaluate: int_(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

Evaluate int(2^(x+1)-5^(x-1))/(10^x)