Home
Class 12
MATHS
If veca=4hatj+5hatj-hatk,vecb=hati-4hatj...

If `veca=4hatj+5hatj-hatk,vecb=hati-4hatj+4hatk` and `vecc = 3hati+hatj+hatk` Find a vector `vecd` which is perpendicualr to both `veca` and `vecb` and `vecd.vecc` = 21 .

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{d}\) that is perpendicular to both \(\vec{a}\) and \(\vec{b}\), and satisfies \(\vec{d} \cdot \vec{c} = 21\), we can follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 4\hat{j} + 5\hat{j} - \hat{k} = 0\hat{i} + 9\hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - 4\hat{j} + 4\hat{k} \] \[ \vec{c} = 3\hat{i} + \hat{j} + \hat{k} \] ### Step 2: Assume the form of \(\vec{d}\) Let: \[ \vec{d} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 3: Set up the equations 1. Since \(\vec{d}\) is perpendicular to \(\vec{a}\): \[ \vec{d} \cdot \vec{a} = 0 \implies 0\cdot x + 9y - z = 0 \implies 9y - z = 0 \quad \text{(Equation 1)} \] 2. Since \(\vec{d}\) is perpendicular to \(\vec{b}\): \[ \vec{d} \cdot \vec{b} = 0 \implies x - 4y + 4z = 0 \quad \text{(Equation 2)} \] 3. From the condition \(\vec{d} \cdot \vec{c} = 21\): \[ \vec{d} \cdot \vec{c} = 21 \implies 3x + y + z = 21 \quad \text{(Equation 3)} \] ### Step 4: Solve the equations From Equation 1: \[ z = 9y \] Substituting \(z\) in Equation 2: \[ x - 4y + 4(9y) = 0 \implies x - 4y + 36y = 0 \implies x + 32y = 0 \implies x = -32y \quad \text{(Equation 4)} \] Now substitute \(x\) and \(z\) in Equation 3: \[ 3(-32y) + y + 9y = 21 \] \[ -96y + 10y = 21 \implies -86y = 21 \implies y = -\frac{21}{86} \] Using \(y\) to find \(x\) and \(z\): \[ x = -32\left(-\frac{21}{86}\right) = \frac{672}{86} \] \[ z = 9\left(-\frac{21}{86}\right) = -\frac{189}{86} \] ### Step 5: Write the vector \(\vec{d}\) Thus, we have: \[ \vec{d} = \frac{672}{86}\hat{i} - \frac{21}{86}\hat{j} - \frac{189}{86}\hat{k} \] ### Final Answer \[ \vec{d} = \frac{672}{86}\hat{i} - \frac{21}{86}\hat{j} - \frac{189}{86}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MOCK TEST PAPER -2021

    ICSE|Exercise SECTION -C (15 MARKS )|10 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati+4hatj+2hatk,vecb=3hati-2hatj+7hatk and vecc=2hati-2hatj+4hatk . Find a vector vecd which perpendicular to both veca and vecb and vecc.vecd=15 .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj, vecb=hati-hatk and vecc=7hati-hatk. Find a vector hatd which is perpendicular to vectors veca and vecb and satisfies the condition vecc.vecd =1.

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=2hati-hatj+hatk and vecb=3hati+4hatj-hatk , prove that vecaxxvecb represents a vector which perpendicular to both veca and vecb .

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .