Home
Class 12
MATHS
Find lambda + mu if (2hat(i) + 6hat(j) +...

Find `lambda + mu` if `(2hat(i) + 6hat(j) + 27 hat(k)) xx (hat(i) + lambda hat(j) + mu hat(k)) = vec(0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(\lambda\) and \(\mu\) such that the cross product of the vectors \( \mathbf{A} = 2\hat{i} + 6\hat{j} + 27\hat{k} \) and \( \mathbf{B} = \hat{i} + \lambda\hat{j} + \mu\hat{k} \) equals the zero vector. ### Step-by-Step Solution: 1. **Set Up the Cross Product**: We need to compute the cross product \( \mathbf{A} \times \mathbf{B} \): \[ \mathbf{A} \times \mathbf{B} = (2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) \] 2. **Use the Determinant for Cross Product**: We can express the cross product using a determinant: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} \] 3. **Calculate the Determinant**: Expanding the determinant, we have: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 6 & 27 \\ \lambda & \mu \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 27 \\ 1 & \mu \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 6 \\ 1 & \lambda \end{vmatrix} \] Calculating each of these 2x2 determinants: - For \(\hat{i}\): \[ 6\mu - 27\lambda \] - For \(\hat{j}\): \[ 2\mu - 27 \] - For \(\hat{k}\): \[ 2\lambda - 6 \] Thus, we have: \[ \mathbf{A} \times \mathbf{B} = (6\mu - 27\lambda)\hat{i} - (2\mu - 27)\hat{j} + (2\lambda - 6)\hat{k} \] 4. **Set the Cross Product to Zero**: Since \( \mathbf{A} \times \mathbf{B} = \vec{0} \), we can set each component to zero: \[ 6\mu - 27\lambda = 0 \quad (1) \] \[ 2\mu - 27 = 0 \quad (2) \] \[ 2\lambda - 6 = 0 \quad (3) \] 5. **Solve the Equations**: From equation (2): \[ 2\mu = 27 \implies \mu = \frac{27}{2} \] From equation (3): \[ 2\lambda = 6 \implies \lambda = 3 \] 6. **Find \(\lambda + \mu\)**: Now we can find \(\lambda + \mu\): \[ \lambda + \mu = 3 + \frac{27}{2} \] To add these, convert \(3\) into a fraction: \[ 3 = \frac{6}{2} \] Thus, \[ \lambda + \mu = \frac{6}{2} + \frac{27}{2} = \frac{33}{2} \] ### Final Answer: \[ \lambda + \mu = \frac{33}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Find lambda and mu if (2 hat i+6 hat j+27 hat k)xx( hat i+lambda hat j+mu hat k)= vec 0 .

Find lambda and mu if (2 hat i+6 hat j+27 hat k)xx( hat i+lambda hat j+mu hat k)= hat0dot

Find lambda if (2 hat i+6 hat j+14 hat k)xx\ ( hat i-\ lambda hat j+7 hat k)= vec0

Find lambda, if (2 hat i+6 hat j+14 hat k)xx( hat i-lambda hat j+7 hat k)= vec 0.

Determine lambda such that a vector vec(r) is at right angles to each of the vectors vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k) .

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

Find lambda where projection of vec (a) = lambda hat (i) + hat (j) + 4 hat (k) on vec (b) = 2 hat (i) + 6 hat (i) + 3 hat (k) is 4 unit

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) and 2 hat(i) - 4 hat(j) + lambda vec(k) are parallel is

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)