Home
Class 12
MATHS
Determine lambda such that a vector vec(...

Determine `lambda` such that a vector `vec(r)` is at right angles to each of the vectors
`vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of `lambda` such that the vector `vec(r)` is at right angles to each of the vectors `vec(a)`, `vec(b)`, and `vec(c)`, we can use the concept of coplanarity of vectors. If `vec(r)` is orthogonal to all three vectors, then the vectors are coplanar, which means the determinant of the matrix formed by these vectors should be equal to zero. ### Step-by-step Solution: 1. **Define the Vectors**: We have the following vectors: - \( \vec{a} = \lambda \hat{i} + \hat{j} + 3\hat{k} \) - \( \vec{b} = 2\hat{i} + \hat{j} - \lambda \hat{k} \) - \( \vec{c} = -2\hat{i} + \lambda \hat{j} + 3\hat{k} \) 2. **Set up the Determinant**: The determinant of the matrix formed by these vectors should be zero for the vectors to be coplanar: \[ \begin{vmatrix} \lambda & 1 & 3 \\ 2 & 1 & -\lambda \\ -2 & \lambda & 3 \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: We can calculate the determinant using the formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] Applying this to our matrix: \[ D = \lambda(1 \cdot 3 - (-\lambda) \cdot \lambda) - 1(2 \cdot 3 - (-\lambda)(-2)) + 3(2 \cdot \lambda - 1 \cdot (-2)) \] Simplifying each term: - First term: \( \lambda(3 + \lambda^2) \) - Second term: \( -1(6 - 2\lambda) = -6 + 2\lambda \) - Third term: \( 3(2\lambda + 2) = 6\lambda + 6 \) Now, combine these: \[ D = \lambda(3 + \lambda^2) - 6 + 2\lambda + 6\lambda + 6 \] \[ D = \lambda^3 + 3\lambda + 6\lambda - 6 + 6 \] \[ D = \lambda^3 + 11\lambda \] 4. **Set the Determinant to Zero**: For coplanarity: \[ \lambda^3 + 11\lambda = 0 \] 5. **Factor the Equation**: Factor out `lambda`: \[ \lambda(\lambda^2 + 11) = 0 \] 6. **Solve for `lambda`**: This gives us: - \( \lambda = 0 \) - \( \lambda^2 + 11 = 0 \) (which has no real solutions) Thus, the only real solution is: \[ \lambda = 0 \] ### Final Answer: The value of `lambda` is \( \lambda = 0 \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Determine alpha such that a vector vec r is at right angles to each of the vectors vec a=alpha hat i+ hat j+3 hat k , vec b=2 hat i+ hat j-alpha hat k , vec c=-2 hat i+alpha hat j+3 hat k

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Find lambda where projection of vec (a) = lambda hat (i) + hat (j) + 4 hat (k) on vec (b) = 2 hat (i) + 6 hat (i) + 3 hat (k) is 4 unit

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

Find lambda + mu if (2hat(i) + 6hat(j) + 27 hat(k)) xx (hat(i) + lambda hat(j) + mu hat(k)) = vec(0) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) and 2 hat(i) - 4 hat(j) + lambda vec(k) are parallel is