Home
Class 12
MATHS
Find the area of region : {(x,y) : 0 le ...

Find the area of region : `{(x,y) : 0 le y le x^(2) + 1, 0 le y le x + 1,0 le x le 2}`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region defined by the inequalities \(0 \leq y \leq x^2 + 1\), \(0 \leq y \leq x + 1\), and \(0 \leq x \leq 2\), we will follow these steps: ### Step 1: Identify the curves and their intersection points The curves involved are: 1. \(y = x^2 + 1\) (an upward parabola) 2. \(y = x + 1\) (a straight line) We need to find the points where these two curves intersect. To do this, we set them equal to each other: \[ x^2 + 1 = x + 1 \] Simplifying this gives: \[ x^2 - x = 0 \] Factoring out \(x\): \[ x(x - 1) = 0 \] Thus, \(x = 0\) and \(x = 1\) are the points of intersection. ### Step 2: Determine the y-coordinates of the intersection points Now we can find the corresponding y-coordinates for these x-values: - For \(x = 0\): \[ y = 0^2 + 1 = 1 \quad \text{(Point: (0, 1))} \] - For \(x = 1\): \[ y = 1^2 + 1 = 2 \quad \text{(Point: (1, 2))} \] ### Step 3: Identify the area segments The area we need to calculate is bounded by: - From \(x = 0\) to \(x = 1\): The area under the curve \(y = x^2 + 1\) - From \(x = 1\) to \(x = 2\): The area under the line \(y = x + 1\) ### Step 4: Set up the integral for the area The area \(A\) can be expressed as: \[ A = \int_{0}^{1} (x^2 + 1) \, dx + \int_{1}^{2} (x + 1) \, dx \] ### Step 5: Calculate the first integral Calculating the first integral: \[ \int_{0}^{1} (x^2 + 1) \, dx = \left[\frac{x^3}{3} + x\right]_{0}^{1} = \left(\frac{1^3}{3} + 1\right) - \left(0 + 0\right) = \frac{1}{3} + 1 = \frac{4}{3} \] ### Step 6: Calculate the second integral Calculating the second integral: \[ \int_{1}^{2} (x + 1) \, dx = \left[\frac{x^2}{2} + x\right]_{1}^{2} = \left(\frac{2^2}{2} + 2\right) - \left(\frac{1^2}{2} + 1\right) = \left(2 + 2\right) - \left(\frac{1}{2} + 1\right) = 4 - \frac{3}{2} = \frac{8}{2} - \frac{3}{2} = \frac{5}{2} \] ### Step 7: Combine the areas Now, we can combine both areas: \[ A = \frac{4}{3} + \frac{5}{2} \] To add these fractions, we need a common denominator. The least common multiple of 3 and 2 is 6: \[ A = \frac{4 \cdot 2}{6} + \frac{5 \cdot 3}{6} = \frac{8}{6} + \frac{15}{6} = \frac{23}{6} \] ### Final Answer Thus, the area of the region is: \[ \boxed{\frac{23}{6}} \text{ square units} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : The area bounded by the region {(x,y) : 0 le y le x^(2) + 1 , 0 le y le x + 1 , 0 le x le 2} is (23)/(9) sq. units and STATEMENT-2 : Required Area is int_(a)^(b) (y_(2) - y_(1)) dx

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

x - y le 2

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1} into two equal parts, then

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

The area of the region R={(x,y)//x^(2)le y le x} is

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }